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Abstract

This study provides evidence that trade expansion has contributed to the degradation
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1. Introduction

A growing debate exists among academics and policymakers about how trade

expansion affects the environment. However, scholars have not reached a consensus

due to their heavy reliance on data from the developed world and data manipulation

issue from the developing world.3 In addition, the evidence of specific mechanisms is

missing. This study uses China’s, the largest developing country, data from NASA to

fill the research gap, hoping to estimate a reliable impact about trade expansion on air

pollution in the developing world.

In this study, we use Chinese county-level trade and NASA’s air pollution

concentration data, namely, average sulfur dioxide SO2 (µg/m3) and PM2.5 (µg/m3)

concentration data. Trade expansion after World Trade Organization (WTO) accession

accounts for approximately 60% and 20% for the increase of PM2.5 and SO2,

respectively, in China. The rising trade-pollution effect is mainly caused by the size of

high-pollution-intensive sectors, which are of first-order importance. Although

pollution intensive trade structure contributes to pollution, it is improving over time.

In addition to reconciling seemingly contradictory results in the literature, we

also provide detailed heterogeneities about the impact of trade expansion on air

pollution in China. Moreover, the increasing effect of trade on air pollution is mainly

driven by scale and pollution sector intensity, whereas the technology progress

mitigate the impact of trade on air pollution and the pollution sector intensity is

3 See Antweiler, Copeland, and Taylor (2001), Cole and Elliott (2003), Copeland and Taylor (2003,
2004), Frankel and Rose (2005), and Managi et al. (2009).
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decreasing. These results can enrich our understanding about the impact of trade on

pollution and indicate strong policy implications.

A main issue, often emphasized in the empirical literature, is that trade openness

is endogenous in the regression. First, decisions on whether to trade and how much to

trade are clearly not randomly assigned, wherein regions that trade more may be

different from regions that trade less in ways related to the environment. Second, the

regression analysis may be confounded by the feedback going from environment to

trade openness, wherein traders can avoid polluted regions.

To address such issues, we rely on China’s WTO accession as a natural

experiment for identification. China is a classic example of a country that has

undergone rapid development through trade policies. Given its accession into the

WTO, China has grown from a small player in world trade to the world’s largest

exporter. At the regional level, China’s accession into the WTO has affected some

places more than others as regions differ in their degree of exposure to international

trade because of geography. Coastal regions, for instance, have benefited most from

the economic opportunities generated by China’s accession into the WTO. Given that

the WTO accession dramatically changed China’s trade pattern by region and time,

such an event has therefore been widely used in several previous studies (Han, Liu

and Zhang, 2012; Lan and Li, 2015; Cosar and Fajgelbaum, 2016; Han, Liu, Ural

Marchand and Zhang, 2016).

Using China’s WTO accession as a subject for a quasi-natural experiment, we
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estimate the effects of trade openness on air pollution through a

difference-in-differences (DID) and instrumental variable estimation strategy. First,

we make use of two sources of sample variation to generate a predicted trade volume:

(1) the difference of trade across counties after China’s WTO accession and that of

counties before 2001, and (2) the variation in trade between across counties. These

variations enable us to compare the changes in the trade across counties before and

after China’s WTO accession in high-exposure versus low-exposure regions and thus

estimate the effect of WTO accession on trade. Second, we use the WTO

accession-induced trade as an instrument to run the two-stage-least squares (2SLS)

estimation of the effect of trade on air pollution.

This study contributes to three streams of literature. First, our study contributes

to the literature by providing evidence, which can be used to strengthen arguments on

whether trade benefits or harms the environment. On the one hand, trade appears to be

good for the environment from some cross-country analysis (e.g., Antweiler,

Copeland, and Taylor, 2001; Copeland and Taylor, 2003; 2004, Frankel and Rose,

2005). These studies utilized data from developed countries. Given that high-income

nations have higher trade and good environmental quality, the regression results often

show that trade appears to be good for the environment. On the other hand, this

observation may be overturned to the subset of less developed countries. Thus, we

study the impact of trade on air pollution in the case of the world’s largest developing

country.
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Second, we use WTO shock as a subject for quasi-natural experiment, which

contributes to the literature utilizing WTO shock to study various topics. For example,

China’s trade expansion can increase income inequality (Han et al., 2012),

productivity (Yu, 2015; Brandt, Van Biesebroeck, Wang and Zhang, 2017), firm

mark-up (Lu and Yu, 2015), expand scope of exports (Feng, Li and Swenson, 2016),

and provide better resource allocation (Khandelwal, Schott and Wei, 2013; Feng, Li

and Swenson, 2017) and higher export quality (Fan, Li and Yeaple, 2015). However,

China’s trade expansion can also reduce education (Li, 2018) and innovation (Liu and

Qiu, 2016). Unlike previous studies, this study is the first to look at whether trade

expansion after WTO accession affects the environment by using China’s

county-level data.

Third, our study contributes to the debate on the relation between trade openness

and environment in China.4 Recently, China has been notable for its rapidly growing

trade and serious environmental degradation. On the one hand, China is now the

world’s largest exporter; on the other hand, one-seventh of the country’s territory is

covered by PM2.5.5 However, Dean and Lovely (2010) found that China’s trade has

declined the pollution intensity. Similarly, de Sousa et al. (2015) found that trade in

4 Besides trade openness and air pollution, studies discussing the environment in China are numerous,
for example, economic growth and environment (Lee and Oh, 2015), population growth and
environment (Wang et al., 2015), and fiscal decentralization and environment (He, 2015).
5 Air pollution has become an issue associated with increasing social unrest, because it negatively
affects our health (Chen et al., 2013; Bombardini and Li, 2016). Water pollution is also severe in China,
drawing a lot of attention. For instance, Cai, Chen, and Gong (2016) and Kahn, Li, and Zhao (2015)
investigated the political mechanisms behind river pollution. For instance, “Under the Dome,” a 2015
self-financed, Chinese documentary film by Chai Jing who was a former China Central Television
journalist, concerns air pollution in China, was viewed over 150 million times on Tencent within three
days of its release on 28 February, 2015. This documentary was also reported by Financial Times,
Forbes, BBC News, Financial Times, New York Times, and other international media.
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China leads to lower pollution.

Thus, we need to look into the relationship between trade and air pollution in

China carefully. Some studies used China’s official pollution data; however, official

data on the environment may be manipulated (Chen et al., 2012; Ghanem and Zhang,

2014). Manipulation decreases the quality and reliability of the official pollution data;

thus, the use of such data can exhibit bias in the estimation. In this study, we use

pollution data from the NASA.

The remaining parts of this study are structured as follows. Section 2 introduces

our data. Section 3 presents the empirical strategy. Section 4 reports our results of

trade openness on environment and robustness checks. Section 5 reports the

heterogeneous effects and channel investigation. Finally, Section 6 concludes this

study.

2. Data

Air pollution data: The air pollution data used in this article are monthly

satellite-based retrievals. We obtain the satellite images from the product

M2TMNXAER version 5.12.4 from the Modern-era Retrospective analysis for

Research and Applications version 2 (MERRA-2) released by NASA in the US6. The

data has been reported at each 0.5 degree × 0.625 degree (approximately 50 km × 60

km) latitude by longitude grid every month since 1980. The concentration of SO2 and

AOD (aerosol optical depth) are reported in the raw data.

6 The data can be downloaded at https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary.
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The concentration of PM2.5 is then derived from the satellite-based AOD

retrievals. AOD essentially measures the amount of sunshine duration that are

absorbed, reflected, and scattered by particles suspended in the air. Thus, AOD can be

used to estimate particulate matter concentrations. In environmental science, the

technique of AOD retrievals is popular for estimating PM2.5 in areas lacking

ground-level measurements (van Donkelaar et al., 2010). The concentration of PM2.5

is calculated following the standard approach given by Buchard et al. (2016). The

monthly pollution data are converted from grid to county by using the

inverse-distance weighting (IDW) method,7 wherein we take weighted average for all

grids within the circle with a radius of 100 kilometers based on the centroid of each

county. We then average such data to annual level across all months for each county

during our research period. The AOD-based pollution data closely match the

ground-based monitoring station measures (Gupta et al., 2006; Kumar et al., 2011).

Although previous studies showed that AOD-based pollution data can predict air

quality (Gupta et al., 2006; Kumar et al., 2011), we compare our AOD-based data

with ground-based data during the year 2013, when China National Environmental

Monitoring Center (CNEMC) and the US Embassy started to report hourly

concentration specific air pollutants; thus, manipulation is not a major concern.8 We

7 The IDW method is widely used in the literature to impute either pollution or weather data (Currie
and Neidell, 2005; Deschênes and Greenstone, 2007; Schlenker and Walker, 2016). The basic algorithm
takes the weighted average of all monitoring stations within a certain radius of the centroid of each
county. We choose 100 km as our threshold radius. Our results are robust to different radii.
8 For real-time air pollution data and the geographic locations of the eight monitoring stations, see
http://www.cnemc.cn/ from CNEMC and http://www.stateair.net/web/historical/1/1.html from the US
Embassy.
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find no statistical difference between the two sets of data conditional on county-fixed

effects. The details are discussed in the Online Appendix, Table A1.

We do not use air pollution data from ground-based monitoring stations for three

reasons. First, the spatial coverage of publicly available data provided by the CNEMC

of the Ministry of Environmental Protection of China was sparse. This data have

covered only 42 cities in 2000 and 86 cities in 2010, whereas AOD-based data cover

the whole country. Second, the ground-based pollution data have only reported Air

Pollution Index (API), which is a piecewise linear transformation of three air

pollutants (PM10, SO2, and NO2). Thus, we cannot explore the effect of specific air

pollutants, such as PM2.5 and SO2. Lastly, ground-based air pollution data have been

manipulated (Chen et al., 2012; Ghanem and Zhang, 2014). We will also show in

subsequent sections that all our baseline findings still hold when we use official API

as alternative measurement for air pollution.

Table 1 shows descriptive statistics for PM2.5 and SO2. The average concentration

of PM2.5 from 2000 to 2013 is 60.25 ug/m3, which is six times larger than the US

EPA’s standard. The average concentration of SO2 during the same period is 18.36

ug/m3, which is also considerably higher than that of most countries.

Table 1. Summary statistics

Variable Definition (Unit) Mean SD Min Max

Air pollutant (μg/m3)

PM2.5 Particulate matter 2.5 60.252 31.133 3.17 157.597

SO2 Sulfur dioxide 18.361 13.809 0.036 67.864

Foreign trade (billion $)

Trade Foreign trade volume 3.003 9.411 0 249.498

Trade ratio Trade/GDP×100% (percentage) 25.518 34.928 0 565.715
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Export Total export volume 1.751 5.124 0 95.805

Import Total import volume 1.252 4.680 0 162.212

Intermediate-Import Intermediate goods imports 0.462 1.696 0 55.187

Final-Import Final goods import 0.305 1.322 0 50.824

Normal trade Normal trade volume 1.757 5.050 0 145.390

Processing trade Processing trade volume 1.245 5.349 0 148.277

Economic variables

Log(TFP) Total factor productivity 3.876 1.291 0.672 7.138

GDP per capita GDP per capita (thousand $) 3.563 4.243 0.243 38.981

FDI ratio FDI/GDP*100% (percentage) 2.197 2.779 0 45.400

Industry output (billion $)

IndustryOP Total industry output 1.789 5.202 0 160.383

PollOP Pollution intensive industry only 0.338 0.996 0 21.453

NonpollOP Non-pollution intensive industry only 1.451 4.481 0 143.364

Notes: N=37,570; number of counties=2734; study period is from 2000 to 2013. Due to space limitation, we

report summary statistics for weather controls in Table A2 in Appendix.

Trade data from Customs: Our main causal variable, county-level international

trade (million US dollars), is obtained from China’s General Administration of

Customs. This government branch records a variety of information for each trading

firm’s product list, including trading price, quantity, and value at the HS eight-digit

level. This rich data set includes import and export data and breaks down the data into

several specific types of processing and ordinary trades. Such unique feature helps us

investigate the heterogeneous effects later. We collapse the data to yearly frequency,

aggregate at county level.

Panel (a) of Figure 1 draws the average national trend of PM2.5 and SO2 since

2000, whereas Panel (b) draws the national trade growth and tariff reduction trend.

Trade has increased exceptionally fast after the WTO accession and declined during

the financial crisis. Before joining the WTO, China has implemented tariff reductions

and other trade policies to gain credibility among its negotiation partners. After
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joining the WTO, China further implements tariff rate reductions. As indicated in

Panel (b), China’s tariff fell sharply in 2001.

(a) Country average air pollution

(b) County total trade and tariff

Figure 1. Time trend of air pollution and international trade in China (2000-2013)

Notes: Panel (a) plots the county-average concentrations of PM2.5 (μg/m3) and SO2 (μg/m3) from 2000

to 2013, the course of our study period. Panel (b) plots the time trend of country-total, export, import,

and trade volume (billion $), as well as the tariff measured by effectively applied tariff which is from

http://wits.worldbank.org/wits/wits/witshelp/Content/Data_Retrieval/P/Intro/C2.Types_of_Tariffs.htm .



11

As shown in Figure 1, one stylized feature is that PM2.5 and SO2 increased

significantly after China’s WTO accession while and during the financial crisis when

the trade bust took place. Air pollution in China seems to display a declining trend.

The tight co-movement between trade and air pollution reveals their positive

association.

We also divide trade into three parts, namely, intermediate imports, consumer

imports, and exports for further heterogeneous effect investigation. Intermediate

imports accounted for approximately 90% of China’s imports, and in turn, fostered

growth in processing trade, which is a significant component of the export of China,

specifically, approximately 60% of exports over nearly 20 years (Fan et al., 2016; Dai

et al., 2016). The database also records firm specific information such as custom

regimes. We rely on two regimes: “ordinary trade” and “processing trade” for the

heterogeneous effect investigation.

Mechanism data from the National Bureau of Statistics (NBS): Scale, pollution

intensive structure, and TFP are obtained and estimated from a rich firm-level panel

data set collected and maintained by China’s NBS in an annual survey of

manufacturing enterprises. Complete information on the three major accounting

statements (i.e., balance sheet, profit and loss account, and cash flow statement) is

available. In sum, the data set covers two types of manufacturing firms, namely, all

state-owned enterprises (SOEs) and non-SOEs whose annual sales exceed RMB 5

million ($ 770,000).



12

The data set includes more than 100 financial variables listed in the main

accounting statements of these firms. Although the data set contains rich information,

some samples are affected by noise and are therefore misleading, largely because of

misreporting by some firms. Following Cai and Liu (2009), we clean the sample and

omit outliers by using the following criteria. First, observations with missing key

financial variables (such as total assets, net value of fixed assets, sales, and gross

value of firms’ output productivity) are excluded. Second, firms with fewer than eight

workers are omitted, given that they fall under a different legal regime, as mentioned

by Brandt et al. (2012). Following Feenstra et al. (2014) and Yu (2015), observations

are deleted according to the basic rules of the Generally Accepted Accounting

Principles (GAAP). Specifically, observations are omitted if any of the following

statements are true: (i) liquid assets are greater than total assets; (ii) total fixed assets

are greater than total assets; (iii) the net value of fixed assets is greater than total

assets, (iv) the firm’s identification number is missing; or (v) an invalid established

time exists (e.g., the opening month is later than December or earlier than January).

We use Cai et al.’s (2016) method to divide the sectors to

high-pollution-intensive sectors on the basis of their industrial SO2 emission intensity

at two-digit industry level. The sectors with emission intensity above the median are

classified as high-pollution sectors. We use high-pollution-intensive industrial output

as the scale measure. Following Chen, Tian, and Yu (2019), we first estimate

firm-level TFPs industry-by-industry. Then, we normalize them by using the national
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industry mean. Finally, we calculate the county-level mean TFP as the technique

measure. We use the pollution intensive sector outputs share in total output as the

structure composition measure.

Weather data from China Meteorological Data Sharing Service System

(CMDSSS): Weather data are obtained from the CMDSSS, which records daily

minimum, maximum, and average temperature, precipitation, sunshine duration,

relative humidity, and wind speed for 820 weather stations in China.9 We then

average relative humidity and wind speed and aggregate precipitation and sunshine

duration across days within each year and construct their second-order polynomials to

capture the potentially nonlinear impact. For temperature, we followed the common

practice in literature to count the number of days within each 5 °C temperature bin

during the year to capture arbitrary nonlinear relationships (Deschênes and

Greenstone, 2011; Chen et al., 2017). See Table A2 in the Appendix for the simple

descriptive statistics for these weather variables.

Other data: Total GDP, income (real GDP per capita), and FDI share of GDP in

each county is obtained from the China County Statistical Yearbook (various years).10

Distance between county and coast is calculated by the Euclidian distance from the

administrative center of a county to that of the nearest coastal county.

9 CMDSSS has been developed and is currently managed by the Climatic Data Center, National Meteorological Information Center, and China

Meteorological Administration. See http://data.cma.cn/ for details.
10 These data can be downloaded at http://tongji.cnki.net/kns55/index.aspx.
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3. Empirical strategy

Our main estimating equation relates to log ሺAir qualityሻ and the log of year

average SO2 (ug/m3) and PM2.5 (ug/m3) concentration data for county ݅ at time ݐ as:

݃݋݈ ሺݎ݅ܣ ሻݐ݅݊݋݅ݐݑ݈݈݋݌ ൌ ݕܥ ൅ ݃݋݈ߚ ݐ݅݁݀ܽݎܶ ൅ ݐܼ݅ߜ ൅ ݅ߪ ൅ ݐߪ ൅ ,ݐ݅ߴ (1)

where ݃݋݈ ݐ݅݁݀ܽݎܶ is our main causal variable, and ݕܥ is the constant term. We let

ݐܼ݅ be the control variables that include county-level income and income square term,

which are motivated by the environmental Kuznets curve (EKC) brought to public

attention by Grossman and Krueger (1993, 1995), FDI with GDP ratio, and detailed

weather controls including second-order polynomials in temperature, relative

humidity, rainfall, sunshine duration, and wind force. ݅ߪ is the county-fixed effects

that control time invariant effect on air pollution. For example, geographic

characteristics can affect pollution directly due to atmospheric dynamics. Coastal

regions tend to receive more precipitation and stronger wind. ݐߪ is the year fixed

effects that control macro or technology shocks to the economy by treating all cities

identically. Finally, ݐ݅ߴ is the idiosyncratic error term clustered at county level.

The summary of the extent of how trade affects air quality is provided by ߚ ,

which is the elasticity of air pollution with respect to trade. However, such variable

cannot be consistently estimated by OLS regression, given that trade is likely to be

endogenous in the air pollution equation, in spite of controlling for county-specific

characteristics and county- and year-fixed effects. First, other unobservable
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determinants of air pollution that are correlated with trade may be contained in the

error term, such as regional environmental policy. Second, the unobserved potential

air pollution may be correlated with trade. Thus, the OLS regression is susceptible to

self-selection bias or reverse-causality problems.

This study uses WTO shock to obtain the exogenous variation in the trade and air

pollution at the county level. To observe the implication of China’s WTO accession on

trade and air pollution, Panels (a) and (b) in Figure 2 illustrate in a graph the trade and

air pollution increase for each county after WTO compared with pre-WTO era in the

map of China. Eastern counties have a much higher value than inland regions in trade

and air pollution. Similar with Figure 1, this co-movement pattern suggests at first

blush the positive causal relation between trade and air pollution.11

(a) Changes in trade volume after WTO

11 In addition to growth values, in the Appendix, Figure A1 shows the average trade and air pollution
level values over our sample period of 2000–2013 for each county on the map of China, wherein
regions with higher trade have higher pollution value.
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(b) Changes in PM2.5 after WTO

Figure 2. Changes in air pollution and international trade before and after WTO
(2000-2013)

Notes: This figure depicts the changes in trade volume (Panel a) and PM2.5 (Panel b) before and after

WTO accessing by comparing the county-average values in 2000-2001 with the ones during the period

2002-2013. Number of counties=2734.
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Figure 2 implies that China’s WTO accession has varying effects on different

regions, wherein eastern coastal areas have experienced a much greater increase in

trade relative to what inland areas have experienced. Thus, we exploit the different

responses of WTO access on high- and low-exposure counties to estimate the trade

regression by using DID approach. On the one hand, China’s WTO accession has led

to a dramatic increase in the country’s trade openness, which averagely corresponds to

a 30% annual growth over the period of 2001–2007 (Figure 1). On the other hand, not

all regions are affected in the same way, given that they have different degrees of

exposure to trade due to geography (Figure 2).

In the literature (e.g., Han, Liu and Zhang, 2012; Lan and Li, 2015; Cosar and

Fajgelbaum, 2016; Han, Liu, Ural Marchand and Zhang, 2016), Chinese regions are

often classified into two categories on the basis of their geographical distance to the

coast: regions with high-exposure to international trade versus regions with

low-exposure to international trade.12 Coastal regions that had more trade before

2001 are more likely to witness more increases in trade after China’s WTO entry in

2001, given that they had gained more advantage in trade due to intra-national trade

cost that separate firms and households from port or border (Atkin and Donaldson,

2015).

Following Han et al. (2012) and Lu and Yu (2015), we classify counties in 10

coastal provinces as high-exposure regions, including Liaoning, Beijing, Tianjin,

12 This methodology is used to compare high-exposure and low-exposure regions before and after
trade expansion shock. This methodology has been also used in previous studies for other developing
countries, such as Goldberg and Pavcnik (2005) on Colombia, Hanson (2007) and Verhoogen (2008)
on Mexico, Topalova (2010) on India, and Atkin and Donaldson (2015) on Ethiopia and Nigeria.
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Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong, and Hainan, from north

to south, and other counties in other provinces as low-exposure regions.

(a) County average trade (billion $)

(b) County average air pollutant

Figure 3. Time trend difference between the Coastland and the Inland (2000-2013)

Notes: This figure compares the difference in time trend of trade volume (Panel a) and air pollutant

concentration (Panel b) between the coastland counties and the inland counties. Number of coastland

counties=949; number of inland counties=1785.



19

Panel (a) of Figure 3 shows the simple average statistics about trade growth trend

before and after 2001 (the year of accession) for high-exposure coastal regions (the

treated group) and low-exposure inland regions (the control group). For the two

groups, trade growth rate has a weakly parallel pretreatment trend before 2001. When

we extend the time to 1980s in the Appendix Figure A2, we can find the parallel

pretreatment trend over the period of 1980–2001. However, from 2001 onwards, such

trend rises remarkably for coastal counties, whereas that of the inland provinces rises

slowly. The estimating equation that relates the log of trade to the WTO shock is

given by the following DID regression.

݃݋݈ ݐ݅݁݀ܽݎܶ ൌ ݕܥ ൅ ݅ݐݏܽ݋ܥߚ ൈܹܱܶݐ ൅ ݐܼ݅ߜ ൅ ݅ߪ ൅ ݐߪ ൅ ݐ݅ߴ , (2)

where ݅ݐݏܽ݋ܥ is the dummy variable that takes the value of 1 for counties that are

located in coastal provinces and 0 otherwise. ݐܱܹܶ is a dummy variable that

denotes the post-WTO period and is equal to 1 for years 2002 and onwards and 0

otherwise. Later, we present further evidence in support of the common trend

assumption regarding the effects of WTO accession on trade. We test formally

whether the pre-trends for the two groups differ before 2001 by estimating more

flexible regressions.

Specifically, we augment Equation (2) by replacing the treatment coastal dummy

with a vector of year dummies. In doing so, we examine how the difference in trade

outcome between high-exposure and low-exposure regions has varied over time. If a



20

parallel pretreatment trend exists, then we should observe nonsignificant coefficient

of the interaction term before 2002. However, if trade in high-exposure regions

changes significantly after the WTO entry, then we expect to see the coefficient of the

interaction term shifts significantly after 2001 (compared with before 2001). This

formally tests the common trend assumption.

݃݋݈ ݐ݅݁݀ܽݎܶ ൌ ݕܥ ൅ ݅ݐݏܽ݋ܥݐߚ ൈ ∑ݐߪ ൅ ݐܼ݅ߜ ൅ ݅ߪ ൅ ݐߪ ൅ .ݐ݅ߴ (3)

Equation (1) is estimated by using two-stage least squares in conjunction with

Equation (2) as the first-stage regression. Panel (b) of Figure 3 also shows the simple

statistics about the air pollution growth trend before and after 2001 for the

high-exposure coastal and the low-exposure inland regions. Air pollution indices have

a weakly parallel pretreatment trend before 2001. However, they rise remarkably for

the coastal counties whereas that of inland areas rises much slower (Also see

Appendix Figure A2). Thus, we also estimate the effect of WTO shock on air

pollution by looking at the reduced form DID equation:

݃݋݈ ሺݎ݅ܣ ሻݐ݅݊݋݅ݐݑ݈݈݋݌ ൌ ݕܥ ൅ ݅ݐݏܽ݋ܥߚ ൈ ݐܱܹܶ ൅ ݐܼ݅ߜ ൅ ݅ߪ ൅ ݐߪ ൅ .ݐ݅ߴ (4)

Equation (4) allows us to directly investigate the within-county effect that WTO

accession has on air pollution, which is facilitated by the trade channel.
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4. Results

4.1 DID-based instrumental regressions

Table 2 reports our baseline regression results by using the WTO shock as a

natural experiment to gauge the trade effect on air pollution. Column (1) is the first

stage results on trade by using DID approach. Before discussing the results, we first

show the pre-trend analysis of our DID regression. The estimated coefficients of the

flexible interaction term in Equation (3) and their 95% confidence intervals are plotted in

Panel (a) of Figure 4, which show no significant differences in the trade growth and trade

GDP share trend between high-exposure and low-exposure regions prior to 2001.

However, since the 2001 WTO entry, a significantly positive effect in trade exists between

high-exposure and low-exposure regions. This finding formally tests the common trend

assumption and also provides further evidence for the impact of trade on air pollution.

(a) Pre-trend test for trade
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(b) Pre-trend test for air pollution

Figure 4. Pre-trend tests (2000-2013)

Notes: This figure depicts the pretend test results of trade volume and trade relative to GDP ratio in

Panel (a), as well as air pollutants in Panel (b). We construct year dummies (2000-2013) interacted with

coastland counties (=1, otherwise=0). We then estimate the effects of all these interactions on

Log(Trade), Trade ratio, Log(PM2.5), and Log(SO2), and exclude year 2000 interaction as the base

group, so that each estimated coefficient is interpreted as the trend comparison to year 2000. The

scatter denotes the point estimate and the whisker denotes the 95% confidence interval.

Concerning identification, the first stage results suggest that the instruments are

powerful. The DID instruments are significant at the 1% level with Kleibergen–Paap (KP)

F-statistics well above the rule-of-thumb threshold of 16.38 suggested by Kleibergen and

Paap (2006) and Kleibergen and Schaffer (2007). Although Figure 1 shows that trade and

WTO accession are positively associated, the first-stage result confirms that the WTO is a

strong determinant of trade expansion. Quantitatively, the first stage results show that,

conditional on a bunch of the economic, weather, geography and year effects, WTO

accession significantly increases county level trade by 40.6%.

Table 2. Baseline results

1st-stage DD Reduced-DD 2nd-stage IV
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Depdent Variable: Log(Trade) Log(PM2.5) Log(SO2) Log(PM2.5) Log(SO2)

(1) (2) (3) (4) (5)

WTO×Coast 0.3409*** 0.0974*** 0.0606***

(0.0125) (0.0026) (0.0035)

Log(Trade) 0.2766*** 0.1682***

(0.0113) (0.0117)

KP F-Statistics 739.4

Year FE Yes Yes Yes Yes Yes

County FE Yes Yes Yes Yes Yes

Economic controls Yes Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes Yes

Notes: N=37570; number of counties=2,734; sample period 2000-2013. Column (1) reports the

DID estimates of WTO shock on Log(Trade), which is the 1st-stage of 2SLS, while Column (2) and

(3) provide the reduced DID estimates to examine the direct WTO shock on air pollutants. Column

(5) and (6) are the 2nd-stage estimates in which WTO×Coast serves as an IV for endogenous

Log(Trade) to respectively identify the causal effects of foreign trade on PM2.5 and SO2. Economic

controls include GDP per capita and its squared form, as well as the percent share of FDI in GDP.

For brevity, they are not reported here (see appendix Table A3 for the full DID-IV estimates).

Weather controls include every 5 ºC temperature bins, second polynomials in relative humidity,

precipitation, sunshine duration, and wind force. Standard errors are clustered by 2734 counties and

are listed in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Columns (2) and (3) display the reduced regression results of our DID estimates

of WTO accession on air pollution directly. Given the DID framework, we show the

pre-trend analysis by running the flexible regression equation. We also draw the

coefficients, wherein their 95% confidence intervals are plotted in Panel (b) of Figure 4,

which show no significant differences in the air pollution trend between high-exposure

and low-exposure regions prior to 2001. When we extend the time period back to 1998 in

Appendix Figure A3, a significant parallel pre-trend is observed between the two groups.

However, since the 2001 WTO entry, a significantly positive effect in air pollution exists

between high-exposure regions and low-exposure regions. Reduced regression shows

that WTO accession significantly raises air pollution: for PM2.5, 10.2 percentage

points and for SO2, 5.6 percentage points.
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Columns (4) and (5) report the second-stage regression results of the elasticity of

trade on air pollution, PM2.5 and SO2, respectively. Our findings demonstrate the

importance of trade for the air pollution deterioration in China. The 2SLS estimates of

the elasticity of air pollution with respect to trade for PM2.5 and SO2 are 0.277 and

0.168, respectively. A 1% expansion in trade raises PM2.5 and SO2 in China by

approximately 0.28% and 0.17%, respectively, on average. Given that trade increases

86.43% after WTO, the increase of PM2.5 and SO2 should be 24.20% and 14.69%,

respectively (86.43  0.28% and 86.43  0.17%). Given that PM2.5 and SO2 increase

from 43.94 and 11.21 before WTO to 61.90 and 19.08 after WTO, the effect of trade

on air pollution is 59.2% and 20.9% for PM2.5 and SO2, respectively.

One striking finding is that the trade accounts for a vastly significant proportion

of the variation in air pollution. Given that trade and air pollution variations are

county specific, we use to estimate the elasticity of trade with respect to air pollution.

This process allows us to compute the county-specific explanatory power of trade on

air pollution. For each county, Figure 5 plots the average effect of trade on air

pollution using the following equation:

ሺTrade෣ ൈβሻൈAir pollutionbefore WTO
Air pollution෣ . (5)

As Figure 5 shows, in eastern counties, trade-induced air pollution change

accounts for a greater share of air pollution change. For example, in counties in

Foshan Prefecture located in the southeastern coast of Guangdong Province, the

average trade volume increased by 178.9% ($ 4,290 to $ 11,963 million) after the
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WTO accession, which leads to nearly 49.5% (178.9% × 0.28) increase in PM2.5 and

30.1% (178.9% × 0.17) increase in SO2. The total changes in PM2.5 (68.7 μg/m3 to

107.2 μg/m3) and SO2 (34.4 μg/m3 to 50.1 μg/m3) before and after WTO is 55.9% and

45.7%, respectively. As a result, trade-induced effect on PM2.5 accounts for 88.6%

relative to total changes in PM2.5 (49.5/55.9 × 100%), whereas trade-induced effect on

SO2 accounts for 65.8% of total changes in SO2 (30.1/45.7 × 100%).

(a) Trade induced PM2.5/Total changes in PM2.5×100%
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(b) Trade induced SO2/Total changes in SO2×100%

Figure 5. Trade induced effect on air pollution after WTO

Notes: This map depicts the predicted trade induced effects on PM2.5 (Panel a) and SO2 (Panel b). Dark

color indicates higher percent contribution to air pollution. The percentage is calculated by the ratio

that trade induced air pollutant relative to total changes in air pollutant after WTO. Number of

counties=2734.

These findings are consistent with the fact that trade and air pollution increases

are higher in eastern areas than inland regions, as shown in Figure 2. However, for

some western counties where air quality is good enough, the trade effect also shows a

high value. Air pollution in these places change negligibly (see Figure 2 for reference),

causing the denominator in Equation (5) to rarely change. For example, counties in

Altay Prefecture located in Northeastern Xinjiang Province, the average trade volume

increased by 42.8% ($ 291 to $ 415 million) after the WTO accession, which leads to

nearly 11.8% (42.8% × 0.28) increase in PM2.5 and 7.2% (42.8% × 0.17) increase in

SO2. The total changes in PM2.5 (16.5 μg/m3 to 18.8 μg/m3) and SO2 (1.2 μg/m3 to 1.3
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μg/m3) before and after WTO is 14.3% and 8.9%, respectively. As a result,

trade-induced effect on PM2.5 accounts for 82.8% relative to total changes in PM2.5

(11.8/14.3 × 100%), whereas trade-induced effect on SO2 accounts for 80.9% of total

changes in SO2 (7.2/8.9 × 100%).

Control variables (in Appendix Table A3) show that with the increase in

county-level income, air pollution also increases. However, when air pollution reaches

a certain point, it will decrease given that the income square term shows a negative

coefficient, namely, EKC introduced by Grossman and Krueger (1993, 1995). FDI

seems to be good for SO2 and shows a statistically nonsignificant effect on PM2.5.

4.2 Bartik-type instruments and continuous treatments

The instrument used in this study is the interaction between the coastal and the

post-WTO dummies. We provide evidence that, conditional on other control variables

and covariates, the overtime trends of pollution are parallel across coastal and inland

counties before 2001. This finding implies that the only reason why coastal counties

differ from inland counties in pollution trends is because they have different

exposures to trade due to coastal/inland geographic locations.

In spite of evidence, skeptical readers may argue that this finding seems a strong

assumption, given that numerous factors may affect regional pollutions that are at the

same time driven by coastal/inland location difference. If these factors cannot be

effectively controlled in the estimation, then the regression suffers from omitted

variable bias. For example, coastal regions are naturally more suitable for the building
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of ports and therefore more likely to become transportation hubs. Given that the

transportation sector is more pollution-intensive, higher growth in pollution is more

likely to be seen in coastal regions as trade and investment ties deepen. However, this

difference in pollution growth is not entirely due to expansion in trade itself.

To address this concern, we rely on the initial industry specialization of a county

to construct a “Bartik-type” trade exposure measure as the instrument, following

Autor, Dorn, and Hanson (2013). If a county’s industry structure is predetermined

before the WTO accession and is persistent during the sample period, then the

overtime change in trade exposure of a region can be relatively well predicted by its

initial industry structure.13 We compute the county-specific weighted average trade

volume across different industries, using county-specific share of trade across

industries in an initial year 2000 as weights. By doing so, a county initially

specializing in China’s fast-growing industries in trade is predicted to experience

faster growth in overall trade after the WTO accession.

Column (1) of Table 3 reports the results using “Bartik-type” instruments in

replace of the ݅ݐݏܽ݋ܥ dummy variable in the above DID estimation. The positive and

quantitative large impact of trade expansion on air pollution is evident. The

coefficient of 0.22 for PM2.5 and 0.15 for SO2 is close to the results in Table 2. In

addition, as lower tariff rates mean a higher degree of openness, we also substitute

WTOt for the weighted average tariff rates Tarifft as an alternative way to measure

13 For example, if a county completely specializes in automobile production, and during the sample
period China experiences fast growth in automobile trade, then we can expect this county itself to
display fast growth in its overall trade as well.
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trade expansion. In Column (2), the robustness of our results is shown by using

“Bartik-type” instruments.

Moreover, instead of using “Bartik-type” instruments, we directly use the initial

trade to replace ݅ݐݏܽ݋ܥ dummy because similar with “Bartik-type” instruments idea,

counties that had more trade openness before 2001 are more likely to witness an

increase in trade openness after the WTO accession in 2001. Such counties have

gained more advantage in trade in terms of information and relationship with foreign

companies. We use the log of trade in each county before 2002 and the ratio of trade

to GDP before 2002 for each county. We also use the geographical distance of each

county to the nearest port to replace Coasti given that counties in close proximity to

the coast would be more likely to trade. We play with as many compositions of these

interactions as possible, and all these robustness-check results are shown from

Columns (3) to (8) of Table 3, which are very similar with our baseline regression

results as copied in Table 2.
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Table 3. Alternative trade shock definition

(1) (2) (3) (4) (5) (6) (7) (8)

Trade shock def. WTO×Bartik Tariff×Bartik
Log(Trade)2000

×WTO

Trade/GDP2000

×WTO

Trade/GDP2000

×Tariff

WTO

×Distance

Tariff

×Coast

Tariff

×Distance

Panel A: 1st-stage Dependent Variable - Log(Trade)

DID estimates 0.1598*** -0.0193*** 0.1047*** 0.0027*** -0.0003*** -0.0201*** -0.0422*** 0.0024***

(0.0373) (0.0046) (0.0376) (0.0002) (0.0000) (0.0012) (0.0015) (0.0002)

KP F-Statistics 18.38 17.98 775.1 147.4 139.5 290.2 748.8 260.6

Panel B: 2nd-stage Dependent Variable - Log(PM2.5)

Log(Trade) 0.2193*** 0.2092*** 0.3381*** 0.3449*** 0.3568*** 0.6109*** 0.2717*** 0.6260***

(0.0314) (0.0350) (0.0133) (0.0248) (0.0272) (0.0306) (0.0114) (0.0333)

Panel C: 2nd-stage Dependent Variable - Log(SO2)

Log(Trade) 0.1542*** 0.1470*** 0.1561*** 0.1669*** 0.1765*** 0.6434*** 0.1640*** 0.6628***

(0.0367) (0.0385) (0.0196) (0.0213) (0.0223) (0.0387) (0.0118) (0.0414)

Notes: N=37570; number of counties=2,734; sample period is from 2000 to 2013. Strictly in line with our baseline regression in Table 2, all regressions in column (1)-(9)

control year FE, county FE, economic variables, and weather controls. Robust standard errors are clustered by 2734 counties and are listed in parentheses; *** p<0.01, **

p<0.05, * p<0.1
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4.3 Further robustness checks

We continue to examine the robustness of the sign and statistical significance of

the effect of ݅ݐݏܽ݋ܥ ൈ ݐܱܹܶ in our benchmark first stage, reduced regression results,

and the elasticity of air pollution to trade. The first robustness check is related to the

omission of other big events, which may affect our estimation. If other events

happened at the same time, then any findings about the treatment effect cannot be

attributed only to the effect of international trade. One important event regarding air

pollution and trade is the global financial crisis after 2007 and other important fiscal

policies during this unique period, such as the 4 trillion RMB investments, export tax

rebates adjustment, and the fiscal subsidy policy about “home appliances going to the

countryside.” If the crisis affects coastal counties more strongly, then our

aforementioned estimates of the effect of international trade could be contaminated.

For example, if during the financial crisis, more investments were put in coastal

regions and pollution-intensive manufacturing sectors, then we would find similar

positive estimated coefficients in Table 2 even without the effects of trade expansion.

To address this concern, we use the subsample of the county-level data over the

period of 2000–2007 to re-run the regression. Table 4, Column (2) reports the

regression results. We find a much greater estimate in the first and second stage

regression in this reduced sample, implying that our findings are not driven by the

aftereffects of the global financial crisis in 2007.
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Our second robustness check considers how sensitive our baseline results are to

change the standard errors and temperature bins. Our benchmark regression clusters

the standard error at county level, given that we use county-level trade variation for

identification. We will now only use robust standard errors and cluster the errors at

prefecture level to the robustness of the significance. Columns (3) and (4) report the

results, and the same significance of our estimates is observed.

Our third robustness check looks into the robustness of our results when we

change the measurement of our control variables. Given that Table A3 has already

compared the results with and without economic variables and weather controls, in

Column (5), we further examine more fine weather conditions. In practice, we extend

our every 5 °C interval temperature bins to every 1 °C interval temperature bins, so

that more flexibly nonlinear temperature effects are captured (see Table A2 for

descriptive statistics about the weather variables). In summary, our baseline findings

are not driven by additional or alternative controls.

Our fourth robustness check considers how sensitive our baseline results are to

change the main causal variable. Our benchmark regression uses trade volume, and

now we will use county-level trade over GDP share for identification. Column (6)

reports the results. Quantitatively, our second stage estimation implies that a 1

percentage increase in trade share increases PM2.5 and SO2 by 1.15% and 0.71%,

respectively. Given that trade share increases 15.98% after the WTO accession, the

increase of PM2.5 and SO2 should be 18.38% and 11.35% (15.98  1.15% and 15.98 
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0.71%), respectively. Given that PM2.5 and SO2 have increased from 43.94 and 11.21

before the WTO accession to 61.90 and 19.08 after WTO, the effect of trade on air

pollution is 58.64% and 16.2% for PM2.5 and SO2, respectively. Thus, the effect is

similar with our baseline regression using log of trade as the causal variable.

Although we stress that using the NASA data rather than the official data

mitigates the data manipulation problem, determining if the results will change when

the official pollution data is used to partly justify the claim will be interesting.

Column (7) of Table 4 presents the results. The results remain positive, but the

elasticity is small at approximately 0.07%, which is much smaller than the NASA data.
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Table 4. Robustness checks

Scenario
Baseli

ne

Perio

d

Alternative

clustering

1-Cels

ius

Alterna

tive

trade

Alterna

tive

pollutio

n

2000-

2007

Robu

st

By

prefectu

re

temper

ature

bins

measur

ement

measur

ement

(1) (2) (3) (4) (5) (6) (7)

Panel A:

1st-stage
Dependent Variable - Log(Trade)

Trade

ratio

Log(Tr

ade)

WTO×Coast
0.340

9***

0.214

9***

0.340

9***

0.3409*

**

0.3411

***

8.4794

***

0.3075

***

(0.01

25)

(0.00

79)

(0.00

90)

(0.0360

)

(0.012

5)

(0.3765

)

(0.0141

)

1st-stage KP

F-Statistics
739.4 740.2 144.2 89.37 739.4 506.6 473.9

Panel B:

2nd-stage
Dependent Variable - Log(PM2.5)

Log(A

PI)

Log(Trade)/Tr

ade ratio

0.276

6***

0.408

9***

0.276

6***

0.2766*

**

0.2807

***

0.0115

***

0.0691

***

(0.01

13)

(0.01

72)

(0.00

89)

(0.0314

)

(0.011

4)

(0.0006

)

(0.0184

)

Panel C:

2nd-stage
Dependent Variable - Log(SO2)

Log(Trade)/Tr

ade ratio

0.168

2***

0.222

3***

0.168

2***

0.1682*

**

0.1669

***

0.0071

***

(0.01

17)

(0.01

48)

(0.00

87)

(0.0325

)

(0.011

7)

(0.0005

)

Observations
37,57

0

21,33

5

37,57

0
37,570 37,570 37,570 37,570

Number of

counties
2,734 2,731 2,734 2,734 2,734 2,734 2,734

Notes: Sample period is from 2000 to 2013. In line with our baseline regression in Table 2, all

regressions in column (1)-(7) control year FE, county FE, economic variables, and weather

controls. The official API (air pollution index) used in column (7) is downloaded from CNEMC

(http://www.cnemc.cn/). Robust standard errors are clustered by county and are listed in

parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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5. Heterogeneous effects and channel investigation

5.1 Export vs. import (intermediate and consumer imports)

Trade openness drives air pollution in China. An increase in trade expansion can

be driven by either an increase in import or an increase in export. Given that in

China’s trade structure, exports are much larger than imports and imports are mainly

intermediate goods for processing exports. Thus, China’s trade increase is mainly

driven by exports. To see whether exports or imports contribute more to air pollution,

we use two causal variables to run the two-stage least square regressions using the

products of log of exports and imports in each county before 2001 and post-WTO

dummy variable as instruments.

Columns (1) and (2) of Table 5 report the results. Exports are mainly related to

an increase in air pollution, approximately three and four times of the effect of

imports on PM2.5 and SO2, respectively. We then decompose imports into intermediate

imports and consumption goods on the basis of the BEC standard. Columns (3) and (4)

demonstrate the regression results. Intermediate imports dominate the effect of

imports on air pollution.
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Table 5. Heterogeneous analysis

Export and Import
Normal trade and
Processing
trade

Pollution and
Non-pollution
industry

Dependent
Variable

Log(P
M2.5)

Log(S
O2)

Log(P
M2.5)

Log(S
O2)

Log(P
M2.5)

Log(S
O2)

Log(P
M2.5)

Log(S
O2)

(1) (2) (3) (4) (5) (6) (7) (8)

Log(Export)
0.2791
***

0.242
0***

0.316
4***

0.116
2***

(0.023
5)

(0.022
1)

(0.019
8)

(0.01
72)

Log(Import)
0.0898
***

0.068
5***

(0.026
6)

(0.023
0)

Log(Intermedi
ate-Import)

0.043
0***

0.035
6***

(0.005
8)

(0.00
54)

Log(Final-Imp
ort)

0.029
1***

0.004
8

(0.005
4)

(0.00
47)

Log(Normal
trade)

0.3249
***

0.2274
***

(0.0655
)

(0.054
4)

Log(Processin
g trade)

0.2321
***

0.1763
***

(0.0615
)

(0.050
1)

Log(PollOP)
0.222
8***

0.138
7***

(0.026
2)

(0.01
76)

Log(NonpollO
P)

0.067
4***

0.032
1**

(0.017
7)

(0.01
44)

IVs

Export2000-2001×W
TO×Coast

+Import2000-2001×
WTO×Coast

Export2000-2001×W
TO×Coast

+Media-Import200
0-2001×WTO×Coas

t
+Final-Import2000-
2001×WTO×Coast

Normal2000-2001×WT
O×Coast

+Processing2000-2001×
WTO×Coast

PollOP2000-2001×W
TO×Coast

+NonpollOP2000-20
01×WTO×Coast

KP F-Statistics 76.96 76.96
108.4
1

108.4
1 28.79 28.79 113.5 113.5

Notes: N=36,847; number of counties=2,652; sample period is from 2000 to 2013. Strictly in

line with our baseline regression in Table 2, all regressions in Column (1)-(4) control year FE,

county FE, economic variables, and weather condition. Robust standard errors are clustered at

county level and are listed in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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5.2 Processing vs. ordinary

We also investigate the heterogeneous effects of processing and ordinary trades

on air pollution given that processing trade are shown to be a cleaner trade mode (de

Sousa et al., 2015). We use processing and ordinary trades to run the regression by

using the products of log of processing and ordinary trades in each county before

2001 and post-WTO dummy variable as two instruments. Columns (5) and (6) of

Table 5 report the results. The results reveal that ordinary and processing trades

contribute to air pollution significantly, although the effect of ordinary trade is slightly

greater than processing trade.

5.3 Effects of pollution intensive industries

In this subsection, we will look into the effect of pollution-intensive sectors on

trade–air pollution relationship. We define more polluting and less polluting sectors

on the basis of the degree of SO2 emission in each two-digit level sectors by treating

the above median level sectors as polluting sectors and otherwise less-pollution

sectors.14 We aggregate the output from firm level data to the county level, and the

firm-level data are from Annual Survey of Industrial Firms in China. This data set has

been widely used in previous studies of the Chinese economy (e.g., Brandt et al., 2012;

Fan et al., 2015b; Fan et al., 2015a; among others).

We use more and less polluting outputs to run the regression by using the

14 For the official standard of polluting sectors, see
http://www.gov.cn/xinwen/2018-02/06/5264316/files/27c5704a32e941e8ac20e40d61209a94.pdf.
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products of log of more and less polluting outputs in each county before 2001 and

post-WTO dummy variable as two instruments. Columns (7) and (8) of Table 5 report

the results. The results convince that more-polluting sectors contribute to air pollution

more than less-polluting sectors, approximately three and four times of the effect of

less polluting sectors on PM2.5 and SO2, respectively.

5.4 Scale, technology, and composition effect

We study the channels of how trade affects air pollution using Antweiler,

Copeland, and Taylor’s (2001) framework. We use high-pollution-intensive industrial

output as the scale measure. Following Chen, Tian, and Yu (2019), we first estimate

firm-level TFPs industry-by-industry. Then, we normalize them by using the national

industry mean. Finally, we calculate the county-level mean TFP as the technique

measure. The pollution intensive sector outputs share in total output as the structure

composition measure. We investigate the effect of scale, technology, and composition

by adding them into the main regression:

Table 6 presents the results. Columns (1) and (5) add scale into the regression.

The impact of trade on PM2.5 and SO2 decline to 0.096 from 0.28 and 0.17,

respectively, implying that scale accounts for 65% and 44% of the effect of trade on

PM2.5 and SO2. Scale itself drives air pollution. Columns (2) and (6) add trade

structure into the regression. The results show that trade structure explains 33% and

18% of the effect of trade on PM2.5 and SO2, respectively. Pollution intensive trade

structure itself also lifts air pollution.
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Columns (3) and (7) only add TFP into the regression. Although it does not

necessarily change the impact of trade on air pollution, technique itself seems to be

good for air pollution. After we delve into three channel variables into the regression,

Columns (4) and (8) show that the impact of trade on air pollution reaches zero. Thus,

the results show that scale and trade structure dominate the effect of trade on air

pollution, and scale alone has the greatest impact. As shown in Table 7, although trade

significantly increases scale, trade actually increases productivity and improves

composition, which is good news for future air quality.
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Table 6. Mechanisms: scale, structure, and technique

Dependent Variable Log(PM2.5) Log(SO2)

Scale Structure Technique Total Scale Structure Technique Total

(1) (2) (3) (4) (5) (6) (7) (8)

Log(Trade) 0.0956*** 0.1598*** 0.2625*** 0.018*** 0.0957*** 0.1391*** 0.1449*** 0.029***

(0.0307) (0.0113) (0.0114) (0.0305) (0.0190) (0.0113) (0.0113) (0.0193)

Log(IndustryOP) 0.0733*** 0.0696*** 0.0177*** 0.0160***

(0.0095) (0.0093) (0.0055) (0.0054)

PollOP/IndustryOP 0.0186*** 0.0159** 0.0284*** 0.0278***

(0.0063) (0.0075) (0.0077) (0.0079)

Log(TFP) -0.0041* -0.0150*** -0.0081*** -0.0035*

(0.0021) (0.0037) (0.0020) (0.0025)

Observations 35,802 36,338 36,396 35,802 35,285 36,338 36,396 35,285

Number of counties 2,591 2,652 2,657 2,591 2,538 2,652 2,657 2,538

KP F-Statistics 33.59 673.3 672.8 33.94 34.09 673.3 672.8 33.95

Notes: Sample period 2000-2013. Strictly in line with our baseline regression in Table 2, all regressions in column (1)-(8) control year FE, county FE,

economic variables, and weather condition. Robust standard errors are clustered by county and are listed in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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Table 7. Effects of trade on scale, structure, and technique

(1) (2) (3)

Dependent Variable Log(IndustryOP) PollOP/IndustryOP Log(TFP)

Log(Trade) 0.3484*** -0.0554** 0.038***

(0.0860) (0.0220) (0.012)

Observations 36,338 36,338 34,490

Number of counties 2,652 2,652 2,597

Year FE Yes Yes Yes

County FE Yes Yes Yes

Economic controls Yes Yes Yes

Weather controls Yes Yes Yes

KP F-Statistics 342.5 342.5 76.19

Notes: Sample period 2000-2013. Strictly in line with our baseline regression, we also use

WTO×Coast as IV to instrument the endogenous Log(Trade), while the year FE, county FE,

economic controls, and weather condition are also controlled. Standard errors are clustered by

county and are listed in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

6. Conclusion

The existing literature provides inconclusive results on how trade causally affects

the environment in China. In this study, we identify the effect of trade on the

environment using new air quality measure from NASA rather than from China’s

official data. Some literature cautions that manipulation problem may exist with

China’s environmental data. Using China’s WTO accession as a subject for a

quasi-natural experiment, we estimate the effects of trade openness on air pollution

through a DID and instrumental variable estimation strategy.

Using county-level panel data for the period of 2000–2013, we have found that

trade appears to have a harmful effect on some measures of air quality, such as SO2

and PM2.5. Numerous robustness checks provide consistent evidence that trade has an
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overall detrimental effect in China, which complies with the hypothesis of an

international race to the bottom driven by trade and the pollution haven hypothesis.

Thus, we should be careful when expanding opening up by trying to avoid such

pollution haven phenomenon.

Export and trade in pollution-intensive sectors dominate the impact of trade on

air pollution. Ordinary and processing trades contribute to air pollution with similar

effects. Intermediate imports show a greater effect on air pollution than imports of

consumption goods. Evidence supporting the claim that scale and pollution intensity

significantly magnifies the impact of trade on air pollution, whereas technique

progress mitigates it is provided in this study. The good news is that the pollution

intensity is improving and technology is also progressing, which may bring a bright

future for China.
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