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Abstract Even though housing markets in different areas are relatively localized, regional home 

prices have become closely correlated and tend to be simultaneously affected by many national 

economic factors. In this paper, through the dynamic copula model, we confirm that regional home 

price dependence is time-varying and the conventional time-invariant copulas underestimate the 

degree of dependence during economic expansions and recessions. In essence, the U.S. residential 

real estate market has become more integrated since the mid-1980s. Using the conditional copula 

model, we further identify how the dependence among regional housing markets evolves along with 

some fundamental economic factors such as unemployment rate and interest rate. These findings 

can help investors and home buyers to better identify and evaluate the systematic risk in the 

nationwide housing market. 
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1. INTRODUCTION 

The U.S. housing market over the past two decades fluctuated substantially and provides a vivid 

example about the formation and burst of an economic bubble. As pointed by Shiller (2007), the 

recent housing boom was led by the more than 10% yearly increase in several west coastal cities 

(Los Angeles, San Diego, San Francisco and Seattle), then spilled into other areas such as Boston 

and Denver and eventually became an unprecedented national boom. After 2006, home prices were 

rapidly depreciating and became stabilized until recently. 

It is intuitive to understand the comovement of localized home prices within the same region. 

There is a sizable literature in finance about contagion and herding effect to explain such a 

phenomenon. For example, Allen and Gale (2000) find that investors tend to engage in risk shifting 

and this kind of behavior can lead to bubbles in asset prices and increase the probability of general 

default. Transactions in housing market are usually debt financed, therefore the probability of 

bubble formation and collapse is also relatively higher when a small liquidity preference shock hits 

the market. However, the recent boom in housing price is a nationwide phenomenon and the effect 

of state- or regional-specific factors should be relatively small. Del Negro and Otrok (2007) 

investigate how local components affect housing price and find that only historical comovement can 

be attributed to local components, while the expansionary monetary policy drive the recent housing 

boom. Besides monetary policy, the fluctuation in home prices also provides some insights about 

how housing markets from different geographic areas became correlated through several national 

economic factors. Fu (2007) explores the possible factors influencing the national home price 

movements and concludes that those factors, such as monetary policy, demographics, real economic 

activity and inflation rate, account for about one-fourth of local home price volatility. Kallberg, Liu 

and Pasquariello (2014) investigate the comovement among home prices for 14 metropolitan areas 

during 1992-2008 and confirm that the substantial home price increase in the sample period can be 

attributed to the covariation of several fundamental and systematic real and financial factors. 

Landier, Sraer and Thesmar (2017) show that the integration of banking industry explains up to one 

fourth of the rise in house price correlation. 

The main contribution of this study is that we implement the copula model to examine the 

dynamic dependence structure among different U.S. regions. It is the stylized fact that the 

correlation among financial markets is dynamic since the seminal work by Erb, Harvey and Viskanta 



(1994) and Longin and Solnik (1995). Engle (2002) proposes a widely used dynamic correlation 

coefficient (DCC) method to detect and estimate the time-varying correlation coefficient between 

two financial assets. Kallberg et al. (2014) use a dynamic factor model to estimate how correlation 

coefficients among 14 largest cities in US evolve over time. Copula is another useful tool to estimate 

dependence structure. Copula theory is built on the Sklar’s theorem (1959), which claims that a 

multivariate distribution can be fully characterized by its marginal distributions and a copula - a 

multivariate distribution function with uniform [0,1] marginals. Compared with other methods such 

as DCC and Kallberg et al. (2014)’s dynamic factor model, copula has several superiorities. First, 

marginals of a copula could be from different distribution families and estimated nonparametrically, 

while DCC usually assumes a multivariate normal distribution or Student- t distribution and the 

dynamic factor model imposes some restrictions on residuals that cannot be explained by several 

common factors. Second, copula with high dimension can model the dependence among multiple 

assets simultaneously. DCC is built on multivariate GARCH models, but only pairwise dynamic 

correlation can be meaningfully obtained from the estimated correlation matrix. Third, different 

types of copula can estimate different dependence structure. For example, when a recession occurs 

and all financial markets crash simultaneously, a Clayton copula can be used to estimate the degree 

of dependence among these markets. Fourth, and of the greatest importance in the study of financial 

dependence, copula uses measures of concordance such as Kendall’s τ and can capture the 

asymptotic tail dependence which is usually nonlinear, while both DCC and Kallberg et al. (2014)’s 

dynamic factor model only gives linear correlation coefficients, which tends to underestimate the 

degree of dependence when extreme events such as price boom or burst of bubble occurs. Since the 

recent fluctuation in housing price is extreme and substantial, copula model can be a useful tool to 

analyze the shift in dependence structures. 

There is a growing literature about the application of copula model in economic research. Since 

Li (2000) and Embrechts et al. (2002), copula has been extensively used in finance and risk 

management. Besides, copula is also used to evaluate the comovement in housing prices. Zimmer 

(2012) finds that the widely-used Gaussian copula underestimates the interdependence across four 

heavily shocked housing markets (California, Neveda, Arizona and Florida) in the midst of the 

housing crisis, because the Gaussian copula predicts asymptotically independence for both tails and 

fails to capture the dependence across different areas when an extreme event happens (e.g., the 



collapse of a housing bubble). He recommends a combination of the Gumbel and Clayton copula 

which has the ability to capture the dependence at both tails. Zimmer (2015) extends to higher 

dimensional copulas by using the vine copulas and concludes that multivariate vine copulas are 

more suitable to model comovement in home prices, but does not examine how the dependence 

changes along the business cycle. Figure 1 provides a direct but intuitive example about how the 

dependence structure of home prices in New York and Boston changes as the unemployment rate - 

arguably one of the most important economic indicators and closely tracked by investors and policy 

makers - evolves along the business cycle. Using the monthly Case-Shiller Index between 1990 and 

2016 as the proxy of home prices in the two cities, in Figure 1a, we find that home prices tend to 

increase simultaneously when the unemployment rate is relatively low (< 4.8%). On the contrary, 

Figure 1b indicates that housing markets in both cities tend to contract when lay-off becomes 

pervasive (> 6.8%), because simultaneous decrease in home prices appears to be more frequent 

when the unemployment rate is high. This example implies the necessity of a conditional copula 

which can detect how the magnitude of dependence (copula’s parameter) changes along with other 

covariates. 

 

In this study, we contribute to the literature by examining the dynamic dependence in housing 

markets across 9 U.S. census divisions through the conditional copula model, which is firstly 

proposed by Patton (2006) to estimate the dependence in exchange rate market and further extended 

by Hafner and Reznikova (2010), Acar, Craiu and Yao (2011) and Abegaz, Gijbels and Veraverbeke 

(2012). Under conditional copula, the dependence structure, measured by the copula parameter, is 



allowed to be adjusted for covariates such as time and other economic variables. Since the real estate 

industry is an important component of the national account and home price is sensitive to other 

economic factors, conditional copula provides great flexibility for researchers to analyze how 

dependence structure evolves along with those economic factors. First, if the dependence indeed 

exists among regional housing markets, we would like to examine the pattern of the dependence 

path and how the degree of dependence changes over the past few decades, especially during 

booming and crisis periods when the linear correlation coefficient tends to underestimate the 

magnitude of dependence. Second, U.S. economy has experienced five economic recessions since 

the mid-1970s and macroeconomic factors such as GDP growth, unemployment rate and monetary 

policies have substantially changed. If the dependence structure across housing markets indeed 

correlates to the business cycle, we are interested in investigating how the degree of dependence 

evolves along with the level of those fundamental economic factors. To address the two questions, 

we respectively adopt the semiparametric dynamic copula model proposed by Hafner and 

Reznikova (2010) and the semiparametric estimation of conditional copula model by Abegaz, 

Gijbels and Veraverbeke (2012). Specifically, if τ∈(-1,1) denotes the correlation coefficient of 

housing markets in different areas, we aim to respectively extend it to τ(t) and τ(x): the former is a 

function of time t while the latter is a function of a covariate x. 

We collect the 1975-2016 House Price Index for 9 U.S. census divisions from the Federal Housing 

Finance Agency. Our analysis confirms that home price dependence among the nine regions is 

dynamic: The comovement among regional housing markets was weak before the mid-1980s but 

became substantially strengthened since then. In other words, the U.S. residential real estate market 

has become more integrated since the mid- 1980s. The housing crisis in 2006 further consolidated 

the dependence structure and the association among regional housing market in 2016 was the 

highest since the end of 1990s. On the contrary, both DCC and Kallberg et al. (2014) underestimate 

the increased dependence during 1990s. Through conditional copula model, we also identify the 

relationship between the dependence structure and several fundamental economic factors. We find 

that the degree of dependence is stronger when the per capita personal real income decreases 

(increases) and when the unemployment is high (low). This is intuitive because economic crisis will 

dampen the demands for new houses while a boom will spur the demands. Loose monetary policy 

such as low interest rate will also spur demands for houses. We further find that comovement among 



markets is evident when the ratio of debt payments in disposable income is high, which usually 

happens in times of boom or when the nationwide housing market is over-heated, like the bubbling 

period before the 2008 global economic crisis. However, when a crisis is looming and banks enforce 

stringent and less flexible loan policy, the deleveraging process will squeeze the percentage of 

residential investment in GDP and we find that regional housing markets will also exhibit strong 

dependence. Even though we cannot claim the causal relationship between the dependence and 

those economic factors because there exists many other local idiosyncratic factors which may also 

contribute to the dependence structure, the evolving patterns of dependence along with those factors 

can help investors and home buyers to analyze and identify the potential systematic risk before 

buying new houses. 

The remaining parts of the paper are organized as follows. We briefly introduce basics of a copula 

model in Section 2. Section 3 discusses the semiparametric estimation of conditional copulas. Data 

and preliminary results for dynamic copula are included in Section 4 and Section 5. We estimate 

how dependence evolves along with a series of economic factors in Section 6. Section 7 concludes. 

 

2.  A BRIEF OF COPULA 

Suppose we have a series of p−dimensional vectors of random variables  
1

T

t t
X


, where 

 1,...,t t tpX X X


 . Let F(x) and f(x) be the joint distribution and density function of X∈Rp, and 

Fi(xi) and fi(xi) be the marginal distribution and density function of Xi, respectively, where 

1 i p  . Then,
1( )i i ix F u where

1( )iF   is the inverse probability transformation function or 

quantile function for xi and ( )i i iu F x  is uniformly distributed over [0,1] by the probability 

integral transformation. By Sklar (1959), the joint distribution of the p-dimensional vectors can be 

written as
1 1 1

1 2 1 1 2 2 1 2( , ,..., ) ( ( ), ( ),..., ( )) ( , ,..., )p p p pF x x x F F u F u F u C u u u    where C(•) is 

the copula function associated with the joint distribution. Thus, a copula is a multivariate 

distribution function with uniform marginal distributions on [0,1]. Sklar’s theorem proves that, if 

F1, F2,…, Fp are continuous, the copula function defined above is unique. Conversely, for any 

marginal distribution Fi and any copula function C, the function 1 2( ( ), ( ),..., ( ))pC F F F   is a 

multivariate distribution function with marginal distributions F1, F2, . . . , Fp. In other word, the 



copula function C and all the marginal functions F1, F2, . . . , Fp are not necessarily of the same 

distribution family, which provides great flexibility when empirical users need to specify a 

multivariate distribution. In addition, according to Sklar’s theorem, if C is continuous, one can 

separate the univariate marginals from the copula which represents the dependence structure. 

Specifically, if we assume Fi(•) is differentiable and C is p times differentiable, we have 

1 2

1 2 1 1

1 2

( , ,..., )
( , ,..., ) ( ) ( )

p

p

p p p

p

F x x x
c u u u f x f x

x x x


   

   
 

where c(u1, u2, . . . , up) is the density of C(u1, u2, . . . , up). Thus, the density of F could be expressed 

as the product of the copula density and the univariate marginal densities and it is obvious that the 

copula has all the information about the dependence structure among the p dimensional vectors. A 

copula function is related to the joint cumulative distribution function via

1 1 2 2 1 2( ( ), ( ),..., ( ); ) ( , ,..., )p p pC F x F x F x F x x x  , where the parameter θ characterizes 

dependence among the p covariates. This dependence parameter is closely related to the dependence 

measures such as Kendall’s τ, Spearman’s ρ and tail dependence coefficients. For application to 

financial data, the dependent parameter is of great interests as it describes the comovement of stocks. 

The estimation of the copula model is well studied, see Fan and Patton (2014) for a review of the 

copular model and their applications in economics. 

There are many different types of copulas and they exhibit different dependence structure. In 

Table 1 we provide a summary of four widely-used copulas in empirical studies: Gaussian, Clayton, 

Gumbel and Frank. For the ease of exposition, Table 1 only displays bivariate copula cases and 

Nelsen (2006) provides more thorough and extensive summary of copulas. Gaussian copula is 

flexible in that it captures both positive and negative dependence. Clayton copula exhibits 

asymmetric dependence and is able to capture the lower tail dependence. Contrary to Clayton, 

Gumbel copula exhibits upper-tail dependence. For example, in the context of home price 

fluctuation, if we believe the housing markets tend to crash together during the recession period, the 

Clayton copula should be a better choice as it is able to exhibit the lower-tail dependence. For 

empirical users, one important question is how to choose a copula function that accurately specify 

the dependence structure among the marginals. For the goodness-of-fit tests and model selection, 

the widely used methods are the Kolmogorov-Smirnov (KS) test, the Cramér-von Mises (CvM) test 



(see Rémillard, 2010) and the Bayesian Information Criterion (BIC) method. Since θ is not directly 

comparable among copulas, it is usually converted to measures of concordance such as Kendall’s τ 

(Nelsen, 2006) which is bounded on (-1, 1). Table 1 also documents how to convert θ to Kendall’s 

τ for the four copulas. 

 

 

3.  SEMIPARAMETRIC ESTIMATION TO CONDITIONAL COPULAS 

A conditional copula becomes necessary when there exists a covariate Z whose influence on the 

dependence structure among X1, X2, . . . , Xp can be modelled by C(u1, u2, . . . , up; θ(z)), where θ(z) 

is a function of the covariate. Put differently, if such a covariate exists, the dependence of C on z is 

fully determined by the dependence of θ on z. Therefore, our main target is to estimate the unknown 

function θ(z) which can be modelled as a polynomial of degree q. As mentioned in the previous 

section, the parameter space Θ is different for many copula families, while polynomial function can 

take any values on the real line. Acar, Craiu and Yao (2011) and Abegaz, Gijbels and Veraverbeke 

(2012) respectively propose a semiparametric method to estimate conditional copulas. Both suggest 

to use a transformation function     z z   such that     1z z    if ψ−1 exists. 

Manner and Reznikova (2012) provide a list of transformation functions for each copula family. 

Assuming that the (q + 1) derivative of the function η exists for each point z, for an observation Zi 

in the neighborhood of z, following Acar et al. (2011) and Abegaz et al. (2012), we approximate 

η(Zt) by a Taylor expansion: 

 
(

0 1

)( ) ( ) ( )( ) ( )( ) ( ) .! )... / .. (q q

t t t t q t

qZ z z Z z z Z z q Z z Z z                   

where
( )  / !( )j

j z j   for j = 0, 1, 2, . . . , q. We further define the joint and continuous marginal 

distribution of (X1, X2, . . . , Xp), conditionally on Z = z, as 

1 2 1 1 2 2( ) ( | ), ,..., , ,...,z p p pF X X X P X x X x X x Z z     , 



1 1 1 1 1,. . ),( ) ( | ) ) (. ( |z pz p pF X P X x F X P X xZ z Z z     

Then, if Zt is near z, 1 1 2 2 }, ,{ ...,( ) ( ) ( ) | ( )z t z t pz pt ic F X F X F X Z  can be approximated as 

   1 1

1 1 2 2 1 1 2 2 0 1( ), ( ),... ( ) | ( ( )) ( ), ( ),... ( ) | ( ( ) ( ) )ˆ ˆ ˆ ˆ ˆ ˆ      ... q

z t z t pz pt t z t z t pz pt t q tc F X F X F X Z c F X F X F X Z z Z z           

where ˆ
jzF denotes the estimated conditional distribution of Xj given Z = z for j = 1, 2, . . . , p. In 

Acar et al. (2011), the marginals are assumed to be known, which is very unlikely in empirical 

applications. Abegaz et al. (2012) extend to estimate the unknown marginals by the Nadaraya-

Watson estimator. Specifically,      
1

ˆ T

jz t jtt
F x z I X x


   , where

1
1

T

tt



 or holds 

asymptotically, 

1

(
 

)
  

)
( )  

(

h t
t T

h tt

K Z z
z

K Z z








 ，  /( /) ( )hK K h h  is a kernel function with 

bandwidth h and I (•) is an indicator function.  

After estimating the nonparametric estimates of the marginals, Abegaz et al. (2012) propose to 

maximize the following copula-based local pseudo log-likelihood function: 

    1

1 1 0 1

1

ˆ ˆ ,( ) | ( ( ) ( ) ) ( )..., ...
T

T
q

z t pz pt t q t h t

t

L logc F X F X Z z Z z K Z z    



       
  （1） 

with respect to 0 1 ), , ..( . , q     . The smoothing parameter h in equation (1) depends on the 

sample size T: the sequence h = hT converges to zero as T extends to infinity. Denoting the local 

polynomial maximum pseudo log-likelihood estimators as 0 1( )ˆ ˆ ˆ ˆ, ,..., q     , we can estimate

 z and its derivatives 
   ˆ j

z through   ˆ!j

jz j   for j = 0, 1, 2, . . . , q. Consequently, 

the estimator of  z  can be written as 
1 1

0( ) ( ( )) ( )ˆ ˆz z        and then an estimator 

of copula function 1 ),...,( | ( )pC u u z  at data point z can be obtained. Abegaz et al. (2012) 

suggest a sufficiently fine grid of z-values in the definition domain of the covariate Z to estimate the 

entire function  z  . Under some standard conditions, Abegaz et al. (2012) prove that, as T → ∞, 

there exists solutions ̂  of the log-likelihood equations / 0( ) jL      for all j = 0, 1, 2, . . . , 

q such that ˆ
j  is consistent for estimating 

( ) / !( ) ( )j

j z z j   for j = 0, 1, . . . , q. 

In practice, there are two important issues on using semiparametric estimation methods. The first 



is the bandwidth selection. Abegaz et al. (2012) derive the theoretically optimal bandwidth and 

provide a rule-of-thumb practical bandwidth selector.2 Besides, they also mention two alternative 

classic methods: leave-one-out cross validation (LOOCV) and Akaike Information Criterion (AIC). 

In our analysis we mainly use the LOOCV to obtain the optimal bandwidth. The second issue is 

model selection. The copula family is numerous and it is crucial for empirical users to know which 

copula is the appropriate one. But in the real world, the true copula is unknown to researchers and 

the accuracy of the estimation is not directly comparable among different copulas. Therefore, we 

need to set a criterion for the model selection problem. In this study, we use the cross-validated 

prediction error (CVPE) method proposed in Acar et. al (2011). Suppose we want to choose the best 

one from the candidate copula set {Ck : k = 1, 2, . . . , K}.For the kth candidate, the selected optimal 

bandwidth is denoted to be 
k

opth  and the estimated conditional copula’s parameter is
 ˆ
k
opt

t

h



with the 

point (X1t, X2t, . . . , Xpt, Zt) left out. Correspondingly, the kth candidate copula model can be written 

as 
    1 2

ˆ, ,..., | k
opt

t

k t t pt th
C u u u Z


 with t = 1, 2, . . . , T  and k = 1, 2, . . . , K. For the joint 

distribution of u1, u2, . . . , up, we use the conditional expectation to estimate the predictive ability 

for each copula in the candidate set. Specifically, for u1, 

        
1

1 2 1 1 2 1
0

ˆˆ | ,..., , , ,..., | k
opt

t t

k t t pt t k t pt th
E u u u Z u c u u u Z du

 
   

Thus, the CVPE or the model selection criterion is defined as 

       
   

22

1 1 2 1 2 1
1

ˆ ˆ| ,..., , ... | , ,..., ,
T

t t

k t k t t pt t pt k pt t t tp t
t

CVPE C u E u u u Z u E u u u u Z
 




      
   

and the copula candidate that yields the minimum CVPE is selected. 

 

4.  DATA 

We collect quarterly Housing Prices Index (HPI) in nine census divisions (New England (NE), 

Middle Atlantic (MA), East North Central (ENC), West North Central (WNC), South Atlantic (SA), 

East South Central (ESC), West South Central (WSC), Mountain (MT) and Pacific (PA)) from U.S. 

Federal Housing Finance Agency (FHFA). The data span from 1975:Q1 to 2016:Q4, a period 

witnesses five recessions.3 Figure 2 demonstrates the path of each division’s percentage changes 

                                                             
2 See p.55 in Abegaz et al.(2012). 
3 According to NBER, the five recession periods are Jan-Jul 1980, Jul 1981-Nov 1982, Jul 1990-Mar 1991, Mar 



from the preceding quarter in HPI and the five economic recessions (indicated by the five shaded 

areas). The greatest volatility in home price happened in the late 1970s and early 1980s. Since then, 

home prices in most areas became less volatile and appeared to follow an upward trend. The sharp 

turnaround happened in 2006, the eve of the subprime mortgage crisis caused substantial drop in 

home price for almost the whole country. Of the nine census divisions, the Pacific division 

(including California, Oregon, Washington, Alaska and Hawaii) displays the greatest fluctuation in 

home price after 2000. This finding is consistent with Shiller (2007), who points out that the recent 

nationwide home price boom that started in 1998 was triggered by the sharp home price increase in 

west coastal cities. 

 

Table 2 documents the descriptive statistics of the quarterly HPI growth rate in each division. The 

average growth rates are positive in all areas. The estimated first-order autocorrelation coefficients

1̂ are positive and statistically different from zero. However, preliminary examinations suggested 

that autoregressive residuals and autoregressive conditional heteroscedasticity exist in all areas, 

while the Ljung-Box test indicates that the series of growth rate are serially correlated up to the 

fourth-order. To avoid spurious dependence, we follow Chen and Fan (2006) and use AR(p)-

GARCH(1,1) models for filtering, while the order of AR, p, is selected based on Bayesian 

Information Criterion (BIC). For example, we fit a series of growth rate to an AR(1)-GARCH(1,1) 

                                                             
2001-Nov 2001 and Dec 2007-Jun 2009. 



process specified as
1 , 1it i i i t ity y      where yit denotes the growth of home price at time t 

for division i and it it ite   with eit following a Normal distribution with mean zero and 

conditional variance defined as 1

2 2

, 1

2

1 , 1i tit i i i i t        . 

 

 

 

 



The results of AR(p)-GARCH(1,1) for each division are presented in Table 3. For some divisions, 

an AR(2) process is sufficient to capture the autocorrelation of the quarterly growth while others 

need an AR(3) process. Table 3 summarizes the coefficients of AR(p)-GARCH(1,1) filtering and 

most of the results are statistically significant. After estimation, a new series of  1,2,...9ity i    

are calculated as
2

1 1 , 1

2

, 1

ˆ
 

ˆˆ ˆ ˆ ˆ

it
it

i i i ii t t

y




    


 

. Thus, we create a new “filtered” series

 1 2 9, ,...,t t ty y y which excludes the potential autoregressive and GARCH effect. In the next step, 

we will substitute the filtered HPI growth rates into copulas to estimate how the dependence 

structure, measured by the copula parameter, evolves with respect to some macroeconomic factors 

such as GDP growth and unemployment rate. 

 

5.  TIME-VARYING DEPENDENCE STRUCTURE 

Before examining how the dependence structure across different areas adjusts to some 

fundamental economic factors, we first investigate whether the dependence itself is time-varying 

over the 40 years. 

One widely used parametric method to estimate such a dynamic correlation in multivariate 

models is the dynamic conditional correlation (DCC) respectively proposed by Tse and Tsui (2002) 

and Engle (2002). They assume that, for k assets, the conditional correlation matrix ρt follows the 

model  1 2 1 1 2 11t t t             where 1 and 2 are scalar parameters, ρ is a k×k 

positive-definite matrix with unit diagonal elements, and Ψt−1 is the k×k correlation matrix. Engle 

(2002) proposes that t t t tDQ D   where  ,t ij t k k
Q q


 is a positive definite matrix that satisfies

 1 2 1 1 1 2 11t t t tQ Q Q       
     and  11, ,1 ,...,1t t kk tD diag q q . Here, ηt is the 

standardized innovation vector, Q  is the unconditional covariance matrix of ηt, and 1 and 2 are 

nonnegative scalar parameters. Dt matrix is a normalizing matrix to make ρt is a correlation matrix. 

Engle (2002) recommends a two-step method to estimate this model. Hafner and Reznikova (2010) 

propose a semiparametric method to estimate the dynamic copula which allows the copula 

parameter to vary over time. Their semiparametric method includes the estimation of the marginals 

at the first stage and the estimation of the copula parameter after replacing unknown marginals with 



the estimated ones at the second stage. In our case, we impose log transformation on 
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Since the second term, LV , does not contain θ, we concentrate on the first term LC(θ) to estimate θ. 

In this analysis, for simplicity, we estimate all the marginals via rescaled empirical CDFs at the first 

stage: 
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where I (•) is an indicator function. We replace the unknown marginals with the estimated empirical 

CDFs. Then, at the second stage, define the local likelihood function 
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,

 /( /) ( )hK K h h is the kernel function with bandwidth h selected through an Extended 

Residual Square Criterion (ERSC) suggested by Fan et al. (1998). Then, the local likelihood 

estimator of the function θ(τ) could be obtained through    ˆ argmax ; ,L h


    . 

We apply this method to Gaussian, Clayton, Gumbel and Frank copula, respectively. Since 

different copulas’ parameters are not directly comparable, we convert the time-varying copula 

parameter ˆ
t into Kendall’s τt and plot them (solid line) in Figure 3. All the four copulas display 

similar patterns of Kendall’s τ over the 40 years. For model selection, following Hafner and 

Reznikova (2010), we choose Gaussian copula because it exhibits the lowest BIC among the four 



candidates for the case of time-invariant copula parameters as shown in Table 4. The plot displays 

how the dependence structure across the 9 housing markets evolved over 1975-2016. Before the 

mid-1980s, regional home prices appeared to be mutually irrelevant because of the low association. 

This is consistent with our observation in Figure 2 which exhibits some volatility before the mid-

1980s. Since then, the dependence started an upward trend, increasing remarkably from 0.1 to 0.7 

in 2000. After a temporary adjustment during early 2000s, following the collapse of the housing 

market in 2006, regional home prices resumed strong association as was in the 1990s. For comparing 

purposes, we additionally calculate the Kendall’s τ obtained from each time-invariant copula and 

draw it in the plot (blue dot-dashed line), respectively. The time-invariant Kendall’s τs appear to 

underestimate the strengthened dependence after 1990s but overestimate the low degree of 

association before 1980. Such a difference should be expected because the time-invariant Kendall’s 

τ is a balance of strong and weak dependence in regional home prices over the whole sample period. 

According to Figure 3, the correlation of regional housing prices indeed behaved differently over 

the 40 years and the degree of association was strengthened after the recent recession. 

 

 



 

As we discussed earlier, compared with DCC and the dynamic factor model by Kallberg et al. 

(2014), the main advantage of copula is that it is able to detect the nonlinear dependence structure 

among multiple assets simultaneously and identify their comovement during some extreme 

scenarios. For comparing purposes, we also apply DCC and calculate the pairwise dynamic 

correlations between several regions. Figure A1 in the supplementary appendix shows that even 

though DCC finds fluctuating correlations between regional housing markets, it does not effectively 

capture the sharp increase in dependence among these regions during the most recent housing price 

boom. Kallberg et al. (2014)’s dynamic factor model indeed finds the strengthened correlation 

among the 14 large U.S. cities since 2000, but fails to identify the remarkable comovement during 

the 1990s. This comparison provides further evidence on copula’s ability to capture the tail 

dependence among multiple assets. In the next section, we will use the conditional copula to 

investigate how the correlation adjusts to some fundamental economic factors. 

 

6.  ESTIMATION RESULTS 

We collect 6 national economic factors from the Federal Reserve Economic Data (FRED): 

quarterly growth of per capita real GDP (GDP), residential investment as a percent of GDP (INV), 

mortgage debt service payments as a percent of disposable personal income (DEBT), civilian 

unemployment rate (UNE), quarterly growth of real disposable personal income (INC), and real 

federal funds rate (RINT). All these factors can, to some extent, mirror the macroeconomic situation 

and are tracked closely by investors and policy makers. 



 

Revenue from housing market is an important source of the national account and housing’s 

combined contribution to GDP is about 15-18% on average (Bureau of Economic Analysis). Figure 

4a displays the quarterly growth of per capita real GDP from 1975 to 2016 and it is evident that per 

capita GDP declined substantially during the five recessions. We plot the relationship between the 

interdependence across the 9 regional housing markets and the growth of GDP in Figure 4b. 

According to Figure 4b, all four types of copula exhibit similar paths of Kendall’s τ and the 

magnitude of dependence is relatively larger when the economy becomes contracted. In other words, 

regional home prices tend to crash simultaneously when a recession is looming. But such a lower-

tail dependence is weakened when GDP resumes positive growth. Kendall’s τ decreases from 0.3 to 

about 0.1. In general, the magnitude of dependence is low when we use GDP as the covariate. One 

possible explanation is that, as indicated in Figure 2, the comovment across housing markets in 

different areas are not substantial or only appeared in some of those areas during the normal periods 

due to some regional-specific idiosyncratic factors which are not controlled by conditional copulas. 

Housing’s contribution to GDP is mainly through two channels. The first channel is the 

consumption spending on housing services, which increased from 3,992 billion dollars in 1980 to 

11,572 billion dollars in 2016 (Bureau of Economic Analysis). The second channel is the residential 

investment, which includes construction of new single-family and multifamily structures, residential 

remodeling, production of manufactured homes, and brokers fees. From 1980 to 2005, the 

residential investment increased from 333 billion dollars to 873 billion dollars, but then sharply 

dropped to 382 billion dollars in 2010. Shiller (2007) identifies that residential investment is highly 

correlated with the business cycle and, as documented in Figure 5a, residential investment as a 

percent of GDP has notably decreased during four marked recessions, except for the one in 2001. 



 

Figure 5b shows that the degree of dependence is larger when the portion of residential investment 

in GDP is low. In other words, it implies that the strongest interdependence is expected when the 

residential investment level remarkably drops, which usually occurs in times of crisis. This finding 

is consistent with the result conditional on GDP growth, and compared with Figure 4b, the degree 

of dependence becomes much larger when using the ratio of residential investment in GDP as the 

covariate. 

 

We then examine how the dependence structure adjusts to the mortgage debt service payments as 

a percent of disposable personal income. Since most housing transactions are debt financed, this 

ratio can partially measure the individual average debt payment ability. As displayed in Figure 6a, 

the percentage of mortgage payment is prominently high during all five recessions, and then sharply 

dropped in the midst of recessions. For example, in the eve of the latest recession in 2007-2008, the 

ratio of mortgage debt payments in disposable personal income reached its historical high at about 

7.1%. However, following the burst of housing bubble, banks have tightened their lending criteria 

and adjustable rate mortgages become less common. At the end of 2016, the ratio of mortgage debt 



service payments to disposable income decreased to only 4.5%. Landier et al. (2017) provide further 

evidence about how banking integration propagate regional home price movement to other states: 

When banks face idiosyncratic shocks and have branches in multiple states, their lending activity 

induces home price comovement. Such an integration among banks could, to some extent, explain 

why mortgage debt level is useful to monitor home price dependence, because the banking 

integration since 1980s makes mortgage debt becomes more convenient and attainable. In Figure 

6b, all four copulas give similar patterns of Kendall’s τ along with the ratio of mortgage debt 

payments. The dependence is weak when the portion of mortgage payments is low, but becomes 

strengthened as the ratio increases. During the so called “irrational exuberance” (Shiller, 2007) and 

when consumers express mass desires to buy homes, mortgage debts will build up rapidly and home 

prices in different regions will increase simultaneously, leading to the stronger interdependence. 

 

High unemployment rate is another feature of economic recessions. Figure 7b indicates that, 

during the “normal” time or when the unemployment rate is moderate, the association among 

regional home prices seems to be weak. When job cuts become pervasive, financial pressure caused 

by lay-off will lower the demand for new houses so that home prices tend to move down. On the 

other hand, low unemployment rate will spur demands for new houses, and such a high demand will 

lead to an increase in price, as evidenced by 1990s. Under this circumstances, the association in 

home prices will also become stronger. Following this argument, we find similar U-shape Kendall’s 

τ curves in Figure 8, which displays how the dependence changes along with the quarterly growth 

of real personal income. It implies that both substantial increase and decrease in personal income 

will lead to remarkable synchronization in home prices. 



 

 

 

Interest rate is another factor that affects consumers’ desire to buy houses. During a booming 

period, the Fed tends to increase the federal funds rate to cool down the over-heated economy and 

speculative investment. High interest rate will increase consumers’ cost and thus dampen their 

demands for new homes, leading to a reduction in housing prices. On the contrary, in times of crisis, 

to stabilize the economy, the Fed often chooses to decrease the interest rate. Figure 9a shows the 

real federal funds rate computed by subtracting the rate of increases of the CPI (all items less shelter) 

for the past 12 months decreased sharply in all the five recession since 1975. Correspondingly, 

demands for houses will be spurred by the low interest rate and the loose monetary policy, leading 

to a new wave of increase in home price. This hypothesis is confirmed by Figure 9b. It shows that 

the degree of interdependence across the nine divisions is rather low when the real interest rate is 

high. When the Fed gradually decreases the interest rate, the interdependence becomes strengthened 

and its degree will be increased to about 0.6 - 0.8. 



In summary, adopting the semiparametric estimation to the conditional copula, we find that the 

dependence across regional housing markets indeed adjusts to different levels of the fundamental 

economic factors. Regional housing markets tend to crash simultaneously in times of crisis due to 

the dampened demands for new houses, which is in line with Rodriguez (2007), Zimmer (2012) and 

Kallberg et al. (2014). Rapid expansion in personal mortgage debt is another important reason for 

strengthened synchronization among regional housing markets. On the other hand, we find that 

home price is not monotonically correlated to unemployment rate and personal income. Such an 

interesting finding implies that correlation in home price is partially determined by the demand side: 

a booming economy and an active labor market generate more demands for houses and spur home 

price, while a dim economy and lowered income dampen housing demands and lead to a downward 

comovement. For policy makers, our findings provide further evidence that demand and desire of 

purchasing houses exhibit large impact on home price. Policies aiming to encourage personal 

mortgage and labor participation will not only spur home price, but also promote synchronization 

among regional housing markets. 

There are a number of caveats to these findings. One concern is that there exists many other 

regional and even metro-specific idiosyncratic factors that drive the comovement within that area 

and those factors may explain a large portion of the volatility (Fu, 2007). Our analysis only considers 

how national factors, such as interest rate, affect the dependence structure. However, considering 

that the recent boom in housing price is a nationwide phenomenon, we believe that the effect of 

state- or regional- specific factors is relatively small. The second limitation is that, even though the 

comovement adjusts to the six national economic factors, we cannot identify which are the 

determinants of dependence, because many factors are closely correlated to each other. One way to 

select the useful covariates is to extend the current univariate x in θ(x) to a p-dimension, say  t  , 

where  1 2, ,...,t t t ptx x x


  , and then choose those exhibit strong explaining power to the 

variation of the copula parameter θ under certain selection criterion. This will extend the current 

conditional copula to a single index copula, which deserves another research in the future and is 

beyond the scope of this study. 

 

 



 

7.  CONCLUSION 

We adopt a semiparametric method to study how the dependence across housing markets in nine 

U.S. census divisions evolves along with several economic indicators. We first prove that the U.S. 

residential real estate market have become more integrated since the mid-1980s and the 

conventional time-invariant copula fails to capture the substantially strengthened association during 

the economic expansion periods. Then we identify the relationship between the dependence and six 

fundamental economic factors and conclude that the association among regional housing markets is 

affected by the macro economic situation and the monetary policy. Even though conditional copula 

is unable to identify the causal relationship between the dependence structure and those economic 

factors, our findings will help investors and home buyers to analyze and evaluate the systematic risk 

in the nationwide housing market. A more thorough analysis to identify which factors determine the 

dependence structure requires a more generalized conditional copula model, which will inspire more 

comprehensive researches in the future. 
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