
Oil Prices and Stock Prices in Clean
Energy: New Evidence from Chinese
Subsectoral Data1

1. Introduction

The International Energy Agency (IEA) believes that the world needs a clean energy

revolution to break its dependence on fossil fuels. Clean energy consists of not just

the new energy but also the vehicles that use them,2 including renewable energy,

nuclear power, and biofuels. In this context, many studies discuss whether clean

energy could have a significant substitution effect on traditional fossil fuels, especially

oil. Some previous literature focuses on the relationship between oil prices and stock

prices for clean energy. For instance, Sadorsky (2012a), Dutta (2017), and Ahmad

1 Posted in Emerging Markets Finance and Trade, on Dec.18th,2019. https://doi.org/10.1080/1540496X.2019.1689810
2 See IEA website, Accessed September 15, 2018. https://www.iea.org/topics/cleanenergytechnologies/.
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and Rais (2018) have found a significant relationship between the two series, while

other literature further discusses the substitution effect between clean energy

subsectors and oil prices. In these studies, most of the researchers believe that crude

oil prices have a positive impact on clean energy stock returns (Apergis and Payne

2014; Reboredo 2015; Reboredo, Rivera-Castro, and Ugolini 2017; Shah, Hiles, and

Morley 2018), whereas a small number of researchers find that the substitution effect

between oil and clean energy is not significant (Henriques and Sadorsky 2008;

Troster, Shahbaz, and Uddin 2018). In addition, certain studies further illustrate the

bidirectional relationship between international oil prices and clean energy stock

returns (Apergis and Payne 2014; Reboredo, Rivera-Castro, and Ugolini 2017). A few

studies also explain the risk spillover effect of oil price volatility on clean energy stock

returns (Sadorsky 2012b; Dutta 2017).

However, these papers often consider the clean energy sector as a whole and

explore the relationship between oil prices and the totality of clean energy (Sadorsky

2012a; Dutta 2017; Ahmad and Rais 2018), instead of considering the

heterogeneous relationship between oil prices and stock prices in different clean

energy subsectors. For example, the substitution effect between oil prices and the

new energy vehicle industry, as an important subsector of clean energy, is more

direct. When oil prices rise, the cost of using gasoline-powered cars increases

accordingly. Thus, some consumers switch to new energy vehicles, thereby

increasing the consumption of new energy vehicles and their stock prices. Therefore,

the impact of oil prices on new energy vehicle stock prices may be significant and

stronger. However, the mechanism of impact from oil prices to the stock prices in

other clean energy subsectors (hydropower, wind energy, solar energy, and nuclear

power) is more indirect. The macroeconomy serves as an essential intermediary

between oil prices and the stock returns in other clean energy subsectors.

Theoretically, international oil prices generally have an impact on the macroeconomy

(Kilian 2009; Ju et al. 2016), which influences the returns and prices in the renewable

energy industry (Shah, Hiles, and Morley 2018). Therefore, clean energy subsectors

have different mechanisms of substitution with oil prices. From this perspective, this

study discusses the heterogeneity between oil prices and stock returns in various

clean energy subsectors.



Previous studies attach less importance to the nonlinear relationship between oil

prices and clean energy stock returns at different periods in the international oil price

cycle. However, from a theoretical perspective, the nonlinear substitution effect

between oil prices and clean energy stock returns can be observed in different

periods. Specifically, since 2010, international oil prices have experienced the period

before, during, and after the 2014 oil price decline. Although the cost of clean energy

at present is still high (Zhang and Rao 2016; Khan et al. 2017), to achieve sustainable

energy development, many countries subsidize the clean energy industry to promote

the consumption of clean energy (Khan et al. 2017). Using clean energy is more

economical than using fossil fuel-based energy, especially when oil prices are

relatively high (e.g., $100 per barrel). Therefore, high oil prices directly drive clean

energy consumption and increase the stock prices on the clean energy industry.

However, during the 2014 oil price decline period, West Texas Intermediate (WTI) oil

prices dropped sharply from $120 per barrel to less than $30 per barrel in less than

six months (See Figure S1, available online). At the same time, the financial market

commonly expects a decline in clean energy consumption and a rise in oil

consumption. However, after the 2014 oil price decline, international oil prices have

fluctuated between $50 and $70 per barrel. The cost of clean energy and fossil

energy may not differ greatly, which may make it less likely that consumers will

change their energy source preferences. Hence, during this period the impact of

international oil prices on clean energy stocks may be minimal.

To address the gaps in the previous literature, this research first discusses the

heterogeneous relationship between oil prices and stock prices in different clean

energy subsectors. Second, it examines the nonlinear relationship between the two

series in two periods (before and after the 2014 oil price decline). Following Sadorsky

(2012b) and Dutta (2017), this research also explores the spillover effect between oil

risk and stock volatility in clean energy subsectors.

Therefore, this study contributes to the literature in at least three ways. First, we

propose a new type of heterogeneous substitution effect between the stock prices in

clean energy subsectors and oil prices, and provide an economic explanation for this

heterogeneity. We find that the impact of international oil prices on the stock returns

for new energy vehicles is greater than the impact on other clean energy subsectors.



Second, this work extends the literature by explaining a new nonlinear relationship in

view of oil price cycles. We find that international oil prices had greater impact on

clean energy stock prices before the 2014 oil price decline period. However, the

mutual substitution effect of the two series became insignificant after the decline. The

third contribution is the analysis on the risk spillover effect using subsector-level data.

The findings indicate that a significant bidirectional risk spillover effect can be

observed between oil and several clean energy subsectors in the full sample.

To investigate the bidirectional relationship (Apergis and Payne 2014; Reboredo,

Rivera-Castro, and Ugolini 2017) and risk spillover effects (Sadorsky 2012b; Dutta

2017), we adopt an asymmetric BEKK-GARCH-M model (Grier et al. 2004) to

examine the oil-stock nexus. In addition, our empirical analysis uses China’s clean

energy stock prices, mainly because various kinds of clean energy are widely used in

China, but other countries, such as Japan and Germany, prefer to develop only one

or two types of clean energy. For instance, Germany focuses on photovoltaic and

wind power generation, which had a 46% share of total installed capacity in 2016.3

Japan has vigorously developed hydropower and nuclear power, but its development

of nuclear power has slowed because of the Fukushima Daiichi nuclear accident in

2011. In 2016, Japan's hydropower generation accounted for about 30% of the total

clean energy power generation. In the same year, China became the world's largest

consumer of renewable energy, making up 20.5% of global consumption. Moreover,

China is also the largest consumer of hydropower, solar energy, and wind energy in

the world. From 1998 to 2015, it made great progress in wind power generation (Lin

and Chen 2018) and exported a large number of photovoltaic products with strong

competitiveness in quality and price (Wang et al. 2018). Part of the Chinese

government’s impetus for vigorously developing new energy vehicles (Zhang and

Rao 2016) is the need to address carbon dioxide emissions and its focus on the

relationship between climate change and the transportation sector (Du et al. 2018).

The remainder of this paper is organized as follows. Section 2 reviews the previous

literature. Section 3 introduces the data, and Section 4 explains the model used in the

3 BP. 2018. BP Statistical Review of World Energy 2017. Accessed October 8, 2018.
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.



empirical analysis. Section 5 discusses the empirical results. Section 6 briefly

concludes this paper.

2. Literature Review

Most of the previous literature finds that oil prices have a significant positive impact

on clean energy stock returns. Ahmad and Rais (2018) use the dynamic spillover

model (DY model) and the ADCC-GARCH model and show that the Wilder Hill New

Energy Global Innovation Index (NEX) is strongly correlated with energy commodities

(Brent, WTI) in 2008–2009 and 2015–2016. The substitution effect between

renewable energy, as part of clean energy, and oil prices has also triggered a heated

discussion. Shah, Hiles, and Morley (2018) adopt a VAR model to study the

relationship between renewable energy, real oil prices, real gross domestic product

(GDP), and interest rates in Norway, the UK, and the US from 1960 to 2015. They

find that with the exception of the UK, renewable energy could be positively

influenced by oil prices in Norway and even more so in the USA (Shah, Hiles, and

Morley 2018). Base on the copula model, Reboredo (2015) points out that a

significant time-varying dependence can be observed between oil returns and

renewable energy indices. Meanwhile, high oil prices stimulate the development of

the renewable energy industry, whereas low oil prices inhibit it. Applying continuous

wavelets and linear and nonlinear Granger-causality tests, Reboredo, Rivera-Castro,

and Ugolini (2017) report that a weak comovement existed between oil prices and

renewable energy stock prices from January 1, 2006, to March 16, 2015, in the short

run, while the dependence between oil prices and renewable energy stock prices was

strengthened in the long run. Apergis and Payne (2014) study 25 member countries

of the Organization for Economic Cooperation and Development (OECD) and shows

that a positive short-term relationship exists between crude oil and renewable energy.

However, some researchers believe that the impact of oil prices on clean energy is

insignificant. In this regard, Sadorsky (2012a) adopts a multivariate GARCH model to

explain the relationship between clean energy index, oil prices, and technology index

and proves that oil prices have neither a significant impact on clean energy stock

returns nor a feedback effect from clean energy. In some studies examining the

relationship between crude oil and renewable energy, Henriques and Sadorsky (2008)



apply weekly data from 2001 to 2007 and reached the same conclusion as Sadorsky

(2012a). On the basis of Granger causality in quantiles, Troster, Shahbaz, and Uddin

(2018) study the US monthly data from November 1989 to July 2016 and prove that

no Granger causality exists between oil prices and renewable energy consumption.

Some recent studies point out a significant bidirectional relationship between oil

prices and clean energy stocks and note a strong risk spillover effect between the two

financial assets. Dutta (2017) uses the Oil Price Volatility Index (OVX) to measure oil

price changes and finds that an increase in oil price volatility increases the volatility of

clean energy stocks, and positive oil volatility shocks have a greater impact than

negative oil volatility. Based on the variable beta model to study firm-level data,

Sadorsky (2012b) maintains that increased oil prices increase the systemic risk of

clean energy. Apergis and Payne (2014) also find that renewable energy has a

feedback effect on oil, when oil prices have a positive impact on clean energy stock

returns. Reboredo, Rivera-Castro, and Ugolini (2017) prove a bidirectional linear

causal relationship between oil and renewable energy in low-frequency data.

Some emerging studies have begun to discuss the relationship between oil prices

and clean energy stock in China, a major clean energy consumer, but researchers

have not reached a consensus. Wen et al. (2014) examine the relationship between

China's new energy (NE) index and coal and oil (CO) index in 2006–2012 using a

BEKK–GARCH model. The study finds a negative correlation between new energy

stock returns and conventional energy. The asymmetric bidirectional effect and

volatility spillover effect can be observed between these two variables. In addition,

Bloch, Rafiq, and Salim (2015) apply autoregressive distributed lag (ARDL) and

vector error correction model (VECM) to study the supply-side era (1977–2013) and

the demand-side era (1965–2011) in China, which shows that increasing oil prices

can increase the use of renewable energy and promote China’s sustainable

economic growth.

In summary, although the previous literature comprehensively discusses the

relationship between clean energy stock and oil prices, only a single clean energy

index is used to represent all the clean energy in the research process, thereby

neglecting the internal heterogeneity among clean energy indices. Meanwhile, earlier



studies directly discuss the data sample as a whole and do not distinguish the

substitution effect between oil prices and the clean energy stock prices by the oil price

period, thus ignoring the nonlinear relationship between the two variables.

Furthermore, only a small amount of the literature explores the volatility between oil

prices and clean energy stocks and the possibility of bidirectional effects. Finally,

although China has become the world's largest renewable energy consumer,

researchers have not placed great importance on China. Therefore, to complement

the growing literature, this study focuses on China in discussing the heterogeneity

and nonlinear relationship between oil prices and clean energy stock returns.

3. Data

The development of China's clean energy sector has accelerated since 2000, and in

2010, China initiated clean energy stock indices. Therefore, we use the daily return

series from January 4, 2010, to December 29, 2017, to analyze the relationship

between oil prices and clean energy indices in China. WTI crude oil prices in US

dollars per barrel are obtained from the website of the US Energy Information

Administration (EIA). As a benchmark for global crude oil market prices, WTI prices

are widely used to study the relationship between oil prices and stock returns (Salisu

and Oloko 2015; Balcilar et al. 2015; Yıldırım, Erdoğan, and Çevik 2018). In addition,

to represent clean energy, the previous literature usually uses the WilderHill Clean

Energy Index (ECO) and the WilderHill New Energy Global Innovation Index (NEX),

neither of which include indices for nuclear energy and new energy vehicles.

Therefore, based on China's clean energy structure, this study extends the scope of

these indices by selecting six clean energy indices in the Chinese stock market,

including hydropower (HYDRO), solar energy (SOLAR), nuclear power (NUCLEAR),

wind energy (WIND), new energy (NEWENERGY), and new energy vehicles (NEV).

Clean energy data are collected from the Wind database.4 NEWENERGY includes

HYDRO, SOLAR, WIND and NUCLEAR. Each observation of clean energy stock

returns can be written as Rt = 100 × logPINDEX,t − logPINDEX,t−1 , and each

4 The constituents of China's new energy index are mainly clean energy companies defined by the IEA, but the
names are different. In addition, we have selected six subsector indices, excluding the biomass energy of IEA
clean energy. At present, Chinese biomass energy listed companies are few, so the stock index of biomass
energy has not been compiled yet.



observation of crude oil price returns could be written as Ot = 100 × logPWTI,t −

logPWTI,t−1 . From these, we can obtain seven return series. Figures S1 and S2

(available online) present the log prices and return series of the data, respectively.

Table 1 presents the descriptive statistics and test results for daily returns. According

to Table 1, Panel A, average returns for all clean energy indices are larger than zero,

whereas the average return for oil is less than zero. The variance shows that oil

returns have the strongest variation, whereas wind energy returns appear to be the

least volatile variable. The standard errors for seven variables are similar.

Furthermore, the skewness statistic shows that, except for the positively skewed

crude oil returns and solar energy returns, returns on hydropower, nuclear energy,

and new energy are negatively skewed. Additionally, except for hydropower returns,

the returns on the remaining six variables exhibit excess kurtosis. Table 1, Panel B,

presents the results of a unit-root test (Dickey and Fuller 1979; Peter and Perron

1988) and an ARCH test. It shows that seven return series reject the null hypothesis

of having a unit root with or without the intercept term and the trend term. That is, all

the return series are stationary. Lastly, the ARCH(4) test indicates the null hypothesis

of no ARCH effect for seven return series is rejected, showing that the return series

have significant conditional heteroskedasticity.

4. Methodology

When researchers study the relationship between crude oil and energy stocks, the

GARCH model (Bollerslev, Chou, and Kroner 1992) is widely used to capture their

bidirectional relationship. The ARCH model (Engle 1982) adds lagged conditional

variance to the conditional variance equation as the explanatory variable. In the

GARCH model family, BEKK–GARCH (Engle and Kroner 1995) is widely applied to

efficiently detect the dynamic comovement between variables. This model can

likewise estimate the bidirectional relationship and risk spillover effects between oil

prices and clean energy stock returns, as suggested by Apergis and Payne (2014)

and Dutta (2017). Therefore, the current study uses the BEKK model to conduct

research. In addition, Salisu and Oloko (2015) and Serletis and Xu (2016) prove that

good news and bad news in the oil market have an asymmetric impact on market risk.



Therefore, the asymmetric effect should be considered during the application of

BEKK–GARCH. At the same time, the capital asset pricing model (CAPM) (Sharpe

1964) points out that the returns on a financial asset tend to have a strong correlation

with its risk. Therefore, the BEKK–GARCH–M model should be applied to describe

the correlation between returns and risks.

According to Grier et al. (2004), the mean equation of the BEKK–GARCH–M can be

written as follows:

Yt = μ + i=1
p ΓiYt−i� +Ψ ht + εt (1)

where εt|Ω�t~N 0,Ht and Ht is the residual εt’s covariance matrix on the basis of Ω�t,

the information set available in period t. Then the positive definite matrix Ht can be

expressed as

Ht =
hRR,t hRO,t
hOR,t hOO,t

(2)

Yt =
Rt
Ot

; μ =
μ1
μ2 ; ht =

hRR,t
hOO,t

; εt =
εR,t
εO,t ; Γi =

γ11
i γ12

i

γ21
i γ22

i ; Ψ = ψ11 ψ12
ψ21 ψ22

where Rt denotes the return data for clean energy stock prices, and Ot represents

the return for oil prices.

The mean equation can be written as

Rt
Ot

=
μ1
μ2 + i=1

p γ11
i γ12

i

γ21
i γ22

i
Rt−i
Ot−i

+ ψ11 ψ12
ψ21 ψ22

�
hRR,t
hOO,t

+
εR,t
εO,t (3)

To illustrate the relationship between clean energy and oil price volatility, we assume

that the variance equation satisfies the GARCH(1,1) process:

Ht = C0
' C0 + A11

' εt−1εt−1
' A11 + B11

' Ht−1B11 + D11
' ξt−1ξt−1

' D11 (4)

where

C0 =
c11 c12
0 c22 ; A11 =

a11 a12
a21 a22 ; B11 =

b11 b12
b21 b22

; D11 =
d11 d12
d21 d22

; ξt =
ξR,t
ξO,t

In Equation (4), ξt is used to identify the asymmetric effect in the BEKK–GARCH–M

model. For example, when oil prices are higher than expected, it is generally

considered good news, which can be expressed as the positive residual of oil prices,



that is, ξO,t = max εO,t,0 . When clean energy stock prices fall, it is considered bad

news, expressed as the negative residual of clean energy stock prices, that is, ξR,t =

min εR,t,0 .

Therefore, the matrix Γi is used to test the return spillover effects between variables.

In general, the null hypothesis can be written as H0: γ12
i = 0 or H0: γ21

i = 0; matrix Ψ

allows us to discuss whether a GARCH–M effect is present in the model. The null

hypothesis is H0: ψij = 0 for all i,j; matrices A and B help us to analyze whether ARCH

or GARCH effects are present in the model, with the null hypothesis H0: aij =

0 for all i,j and H0: bij = 0 for all i,j, respectively；Matrix D is used to test whether the

asymmetric ARCH effect is present in the model, and the null hypothesis is H0: dij =

0 for all i,j.

5. Empirical Results

5.1.Model Selection

Following Bouoiyour and Selmi (2016) and Chu et al. (2017), we apply the Akaike

information criterion (AIC; Akaike 1974) to compare the BEKK-GARCH,

BEKK-GARCH-M, and asymmetric BEKK-GARCH-M models and select the most

suitable one among them. Table 2 shows the AIC results of the three models. First,

the AIC of HYDRO, NUCLEAR and NEV in the asymmetric BEKK-GARCH-M model

are lower than that of the BEKK-GARCH-M and BEKK-GARCH models. Meanwhile, a

few differences are found among the AIC of SOLAR, WIND, and NEWENERGY in the

three models. Furthermore, the asymmetric BEKK-GARCH-M model has the lowest

average AIC result. Therefore, the asymmetric BEKK-GARCH-M model is preferred

for our estimation based on AIC.

In addition, Grier et al. (2004) suggests that the significance of coefficients could test

whether GARCH, GARCH–M, or asymmetric effects exist in the model. Table S1

(available online) displays a significant BEKK-GARCH effect. The impact of clean

energy and oil price volatility on themselves (b11
2 and b22

2 ) are significant. Meanwhile,

the bidirectional volatility spillover effects (b12
2 and b21

2 ) among hydropower, wind

energy, new energy, and oil price are also significant. Table S1 also shows a



significant BEKK-GARCH-M effect. The impact of clean energy volatility on its own

returns (ψ11 ) is significant except in solar energy. However, only the volatility of

nuclear energy and wind energy have a significant negative spillover impact on oil

price returns ( ψ12 and ψ21 ). Table S1 illustrates that the asymmetric

BEKK–GARCH–M model is superior. The asymmetric spillover effects (d12
2 and d21

2 )

between volatility in new energy sources and oil price are significant except in nuclear

energy. But d11
2 is significant only for wind energy, new energy, and new energy

vehicles.

5.2.The Unidirectional and Heterogeneous Relationship between Oil Prices and
Stock Returns in Different Clean Energy Subsectors

Table 3, Panel A, shows a unidirectional relationship between oil prices and stock

returns in different clean energy subsectors. The results of the significant coefficient

γ12 but insignificant coefficient γ21 in Table 3, Panel A, prove that oil prices have a

significant positive impact on stock returns in clean energy subsectors but no

feedback effect exists. This result indicates that, although China has developed clean

energy to some extent, its substitution effect on oil is still insignificant. Fluctuation in

oil prices still dominates the development of clean energy, so we find a strong

substitution effect of oil on clean energy. This result further confirms the IEA’s view

that clean energy needs to achieve a revolutionary breakthrough to break the

dependence on fossil fuels.

Table 3, Panel A, also reports a heterogeneous oil-stock relationship among different

clean energy subsectors. In Table 3, Panel A, oil prices have the strongest influence

on stock returns for new energy vehicles (γ12 = 0.0618 ) and the smallest effect on

stock returns for hydropower ( γ12 = 0.0353 ). Solar, nuclear, and wind energy are

similarly affected by oil prices, and the coefficient γ12 is approximately 0.05.

Specifically, when international oil prices increase by 1%, new energy vehicle stock

returns increase by 0.0618%, stock returns for solar, nuclear, and wind energy

increase by about 0.05%, and hydropower stock returns increase by only 0.0353%.



This heterogeneous relationship has at least two economic explanations. First, the

strongest effect on the new energy vehicle sector indicates that the direct substitution

effect between international oil prices and clean energy stock returns is much

stronger than the indirect substitution relationship. A direct substitution effect exists

between new energy vehicles and international oil prices, because new energy

vehicles and traditional cars are alternatives. When oil prices increase, the cost of

using traditional gasoline-powered vehicles increases, thereby encouraging the

consumption of new energy vehicles. However, when international oil prices fall, new

energy vehicles tend to be more costly and less competitive than traditional vehicles,

thus resulting in revenue reduction (Zhang and Rao 2016). The impact of

international oil prices on other clean energy sources requires the macroeconomy to

be an intermediary to complete the transmission. In general, due to a shock from

unanticipated events, the impact of oil prices can cause macroeconomic fluctuation

(Ju et al. 2016). Moreover, the accumulation of macroeconomic fluctuations could

eventually affect clean energy stock returns (Shah, Hiles, and Morley 2018). When oil

prices rise, the macroeconomy maintains a steady and rapid growth, and stock

returns rise for hydropower, wind, solar, and nuclear energy. When oil prices fall,

macroeconomic weakness may lead to a decline in revenues for clean energy.

However, these indirect effects are lost to a certain degree in the transmission

process, so indirect effects are inevitably weaker than the direct impact between oil

and new energy vehicles.

Second, the minimal impact on hydropower stock returns shows that the operational

stability of clean energy subsectors directly determines their oil price risk tolerance

level. Among all the clean energy sources, hydropower has conversion efficiency that

can be maintained around 90%, which is much higher than for solar, wind, and

nuclear energy.5 During a peak period of electricity consumption, hydropower plants

can open the floodgates to increase power generation. In a valley period, excess

electricity can be used to pump water for storage to meet the demand for electricity

during peak periods. In addition, China has terraced terrain, which descends from

west to east, making it suitable for developing hydropower (Chu, Liu, and Pan 2019).

However, the development of nuclear power has been resisted in many countries

5 IPCC. 2011. IPCC Special Report: Renewable Energy Sources and Climate Change Mitigation. Accessed March 3,
2019. https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/hydropower/.



because of the impact of the Fukushima nuclear accident in Japan in 2011.

Furthermore, the operation of wind turbines is easily affected by seasons and wind

speed, while solar power generation is also affected by the weather. The profitability

of enterprises in each subsector can vary because of differences in the stability of

power generation in different clean energy subsectors. The overall performance of

hydropower companies is the best, which is why the hydropower sector is better able

to withstand the impact of oil price volatility than other clean energy subsectors.

Therefore, hydropower stock returns are less likely to be influenced by international

oil prices.

Overall, increases in oil prices improve clean energy stock returns, which is

consistent with the conclusion in the previous literature (e.g., Sadorsky 2012a; Wen

et al. 2014; Reboredo 2015; Khan et al. 2017). However, our contribution to the

literature is in showing a heterogeneous oil-stock relationship and outlining two

possible economic implications based on this heterogeneity. Second, unlike

preceding conclusions about the feedback effect of clean energy stock prices on oil

prices (Apergis and Payne 2014; Reboredo, Rivera-Castro, and Ugolini 2017), we

find that international oil prices are not be influenced by the stock returns in China's

clean energy subsectors.

5.3.Nonlinear Relationship between Oil Prices and Stock Returns during Two
Oil Price Cycles

Khan et al. (2017) suggest that the 2014 oil price decline might have hurt the

short-term outlook for certain clean energy technologies, including new energy

vehicles. However, few studies discuss whether different effects could exist between

oil and stock markets during the periods before and after this decline. Following

Baumeister and Kilian (2016), we delineate two important oil price periods after 2010:

before the 2014 oil price decline, from January 4, 2010, to May 30, 2014, and after it,

from January 1, 2015, to December 29, 2017.6

6 The decline period in oil prices is from June 2, 2014, to December 31, 2014. Because the sample size of this
period is relatively small, the estimated results during this period could be biased. Therefore, we do not discuss
the relationship between oil prices and clean energy subsectors during this period but, rather, focus on the
differences between the periods before and after it.



Table 4 reports the strong positive impacts of oil prices on stock returns in clean

energy subsectors before the 2014 oil price decline, but the impacts after the price

decline period are insignificant. The results for NEWENERGY in Table 4, Panel A

show that, on average, a one-percentage-point oil price shock triggers stock return

changes for new energy as a whole of about 0.0998% in the period before the oil

price decline. More specifically, the coefficients γ12 for the four new energy

subsectors in Table 4, Panel A are all significant, and the coefficients are higher than

0.8. However, coefficients γ12 in Table 4, Panel B are insignificant, indicating that oil

prices have no impact on clean energy stock returns in the period after the oil price

decline.

This result could be caused by the high cost of clean energy subsectors. The

production cost of clean energy is still high (Khan et al. 2017), which results directly

from the reduction in subsidies for clean energy. These subsidies created a

budgetary burden for the Chinese government (Li et al. 2018). Hence, the Ministry of

Finance reduced the subsidy on new energy vehicles by 20% in 2017-2018 and by

40% in 2019-2020, compared with the 2016 level. The price for on-grid solar power in

type 1 resource regions (i.e., regions with more than 1,600 hours of equivalent

utilization hours per year) was 0.8 RMB/KWh in 2016, reduced to 0.65 RMB/KWh in

2017.7 At the same time, the price for on-grid onshore wind power was reduced to

0.40 RMB/KWh after 2017.8 Therefore, the price difference between new energy and

coal-fired power has narrowed. Before the 2014 oil price decline, international oil

prices fluctuated above $100 per barrel. The cost of fossil fuel is much higher than

that of subsidized clean energy, so consumers were willing to reduce using fossil

fuel-based energy and switch to clean energy. Therefore, a significant substitution

effect could be observed between oil and clean energy before the 2014 oil price

decline. However, after the 2014 oil price decline, the cost of subsidized clean energy

was almost equivalent to oil prices. According to a joint report on electricity generation

costs by the IEA and the NEA,9 the cost of solar energy and onshore wind with a 3%

7 Ministry of Finance. 2015. Notice on Financially Supportive Policies to Promote the Use of New Energy
Vehicles (2016–2020). Accessed March 17, 2019. http://www.mof.gov.cn/gp/xxgkml/jjjss/201504/t20150429
_2512151.html.
8 For details, see the website of the National Development and Reform Commission (NDSR), Accessed March
20. 2019. http://www.ndrc.gov.cn.
9 NEA and IEA. 2015. Projected Costs of Generating Electricity 2015. Accessed April 2, 2019.

http://www.mof.gov.cn/gp/xxgkml/jjjss/201504/t20150429


discount in China is approximately $55/MWh and $46/MWh, respectively. As the

subsidy is about $8-$27/MWh,10 the real cost of new energy is $27-$38/MWh. In the

period after the 2014 oil price decline, oil prices fluctuated between $50 and $70 per

barrel, which is about $30-$41/MWh.11 Therefore, the substitution effect of oil prices

on clean energy stock returns is not significant.

In Panels A and B in Table 4, the coefficients γ21 before and after the 2014 oil price

decline are all insignificant. This is because the new energy sector accounts for a

very small proportion of the energy industry, so clean energy stock returns have no

impact on international oil returns.

The nonlinear relationship found between oil prices and stock returns in clean energy

subsectors extends the previous studies in the following two ways. First, our finding

shows previous conclusion of insignificant relationship between oil prices and clean

energy stock returns ignores the different effects between the periods before and

after 2014 oil price decline. Henriques and Sadorsky (2008) use the data from

January 2001 to May 2007. In their sample, the international oil price increased from

$29.59 per barrel in January 2001 to $60.44 per barrel in May 2007. However, no

serious oil price crashes occurred during this period, and thus they came to an

insignificant conclusion. Similarly, Troster, Shahbaz, and Uddin (2018) study US

monthly data from November 1989 to July 2016. They did not separately discuss the

impact of oil prices on clean energy stock prices before or after oil price crashes, so

the result is also insignificant. Second, this research provides an economic

explanation that considers the high cost of clean energy in the nonlinear relationship

between oil prices and stock returns. We believe that the cost of clean energy and the

Chinese government’s subsidies distort the real effects and cause a nonlinear

relationship during periods of different oil prices.

https://www.oecd-ilibrary.org/energy/projected-costs-of-generating-electricity-2015_cost_electricity-2015-en
.
10 The on-grid price of thermal power is about 0.27-0.47 RMB/KWh, so we calculate the on-grid price
difference between thermal power and new energy as the subsidy.
11 For details, see the EIA website; 1 barrel of crude oil = 5,722,000 Btu, and 1 KWh = 3,412 Btu, so we
calculate 1 barrel of crude oil = 1.67MWh, Accessed April 13, 2019.
https://www.eia.gov/energyexplained/index.php?page=about_energy_units/.



5.4. A Bidirectional Risk Spillover Effect between the Oil Market and Stock
Prices in Clean Energy Subsectors

Table 3, Panel B, shows a significant bidirectional risk spillover effect between oil

prices and stock returns in hydropower, wind energy, and overall clean energy

indexes. In the ARCH spillover effect in Table 3, Panel B (a12 and a21), the effects of

oil volatility on hydropower and wind energy stock risks are about 0.0006 and 0.0045,

respectively. The feedback effect of these two subsectors on oil volatility from stock

risks are about 0.001. As for the GARCH spillover effect in Table 3, Panel B (b12
and b21), a bidirectional risk spillover effect exists in hydropower and wind energy, but

b12 and b21 are significant at around 0.0001 in the overall clean energy index.

Moreover, both ARCH and GARCH effects in other clean energy subsectors, such as

solar energy, nuclear power, and new energy vehicles are positive but insignificant in

Table 3, Panel B.

However, Table 5 reports these significant bidirectional risk spillover effects in

hydropower before the 2014 oil price decline, while the overall new energy index and

the nuclear subsector index only have significant unidirectional effects in the same

period. In Table 5, Panel A, only the GARCH effects (b12= 0.1554 and b21= 0.2442)

for hydropower are significant, but the ARCH effects for hydropower are insignificant.

Meanwhile, only unidirectional ARCH effects on oil price volatility from the stock risks

of nuclear power and the overall clean energy index are significant. But in Table 5,

Panel B, none of the estimated coefficients are significant after the 2014 oil price

decline.

Therefore, the full sample period shows significant bidirectional risk spillover effects

between some clean energy subsectors (hydropower and wind) and oil over the full

period. The cumulative risk (GARCH effect) in hydropower and unexpected

information on nuclear energy (ARCH effect) was passed on to the oil market before

the 2014 oil price decline. However, the volatility spillover effect from oil prices to

clean energy stocks is not significant before and after the 2014 oil price decline. This

study contributes to the literature (Sadorsky 2012b; Dutta 2017) by explaining both

the stock risks in the entire clean energy sector and its subsectors could have



significant risk spillover effects on the oil market. At the same time, we also discuss

the risk spillover effects before and after the 2014 oil price decline.

6. Conclusion

Clean energy generally includes different types of renewable energy, new energy

vehicles, and nuclear energy. However, most current studies do not discuss the

heterogeneity between international oil prices and clean energy stock returns based

on the characteristics of the clean energy subsectors. Moreover, the previous

literature has also ignored the possibility of a nonlinear relationship between

international oil prices and clean energy stocks at different points in an oil price cycle

and pays little attention to the similarities and differences between the periods before

and after the 2014 oil price decline. Therefore, based on the asymmetric

BEKK-GARCH-M model, we first study heterogeneity in shocks between oil prices

and clean energy stock returns and then discuss the nonlinear relationship between

oil prices and clean energy stocks during different oil price cycles. Finally, we

examine whether spillover effects exist between international oil prices and China’s

clean energy stocks.

We come to at least three main conclusions. First, we find a strong heterogeneous

relationship between international oil prices and clean energy subsectors. In

particular, international oil prices have the largest impact on stock returns for new

energy vehicles but the smallest impact on hydropower stock returns. However, clean

energy stock returns have few feedback effects on oil prices. Second, international oil

prices and clean energy stock have a nonlinear relationship before and after the 2014

oil price decline, in which international oil prices have a stronger positive impact on

clean energy stocks before the 2014 oil price decline. However, we do not find any

statistically significant relationship between oil prices and Chinese clean energy

stocks after the 2014 oil price decline. Third, we demonstrate a significant

bidirectional risk spillover effect between oil prices and Chinese clean energy stocks,

especially for hydropower and wind energy in the full sample.



These findings have critical implications for both policy makers and investors in the

financial market. First, the heterogeneity of the impact of oil prices on different clean

energy subsectors’ stock returns requires policy makers to design heterogeneous

policies for different subsectors to withstand oil shocks. For example, policy makers

should increase policy support for new energy vehicles, strengthen their

competitiveness, and reduce the cost of using new energy vehicles. Second, clean

energy stock returns do not have a significant impact on international oil prices, so

policy makers should vigorously support the development of clean energy to achieve

economic substitution with fossil fuel-based energy. Third, policy makers should take

the oil price cycles into consideration in the development of clean energy. Last but not

least, investors in the Chinese stock market should consider the impact of oil prices

on clean energy stock price by reducing the proportion of clean energy in their

portfolio when the risk of oil prices is relatively high. Therefore, it may be necessary to

incorporate Chinese clean energy stock volatility into the oil price risk forecasting

system.
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Table 1 Summary statistics

WTI HYDRO SOLAR NUCLEAR WIND NEWENERGY NEV

Panel A: Descriptive Statistics

Mean -0.0131 0.0520 0.0400 0.0152 0.0236 0.0191 0.0487

Variance 4.2725 3.6956 4.0270 3.7294 3.2410 3.3709 3.6477

Standard 2.0670 1.9224 2.0067 1.9312 1.8000 1.8360 1.9099

Skewness 0.1593*** -0.7504*** 0.1703** -0.8040*** -0.9435*** -1.0246*** -0.6498***

Kurtosis 3.4090*** 2.9363*** 15.2803*** 4.3359*** 4.2979*** 4.5425*** 3.3431***

Panel B: Unit root test and ARCH test

ADF(a) -33.6966** -31.5901** -29.7931** -30.6238** -30.6568** -30.5093** -31.0549**

ADF(b) -33.7047** -31.5977** -29.7946** -30.6312** -30.6629** -30.5135** -31.0609**

ADF -33.7101** -31.5742** -29.7872** -30.6363** -30.6632** -30.5170** -31.0419**

PP(c) -47.4663** -41.3746** -41.0576** -41.9830** -41.7124** -41.1906** -40.9840**



PP(d) -47.4663** -41.3747** -41.0593** -41.9830** -41.7131** -41.1914** -40.9848**

ARCH(4) 193.7180*** 260.1380*** 57.0700*** 344.8610*** 402.004*** 375.6320*** 352.7280***

Notes: NEV: New Energy Vehicles, ADF(a): with trend and intercept, ADF(b): with intercept, ADF: without intercept and trend, PP(c): with

intercept, PP(d): with trend and intercept.

Table 2 The model selection of GARCH, GARCH-M and asymmetric GARCH-M

Asymmetric BEKK-GARCH-M BEKK-GARCH-M BEKK-GARCH

Log likelihood AIC Log likelihood AIC Log likelihood AIC

HYDRO -8305.7630 16661.5260 -8314.5363 16671.0726 -8317.3625 16668.7250

SOLAR -8315.1635 16680.3270 -8319.5667 16681.1334 -8322.1698 16678.3396

NUCLEAR -8213.3688 16476.7376 -8220.6166 16483.2332 -8224.9221 16483.8442

WIND -8139.0890 16328.1780 -8142.9514 16327.9028 -8146.3145 16326.6290

NEWENERGY -8143.3826 16336.7652 -8148.1799 16338.3598 -8150.9873 16335.9746

NEV -8294.1623 16638.3246 -8301.0850 16644.1700 -8305.9156 16645.8312

Average -8235.1549 16520.3097 -8241.1560 16524.3120 -8244.6120 16523.2239

Notes: "Significant" includes the significance level of 10%, 5% and 1%.

Table 3 Selected results for the full sample

WTI &

HYDRO

WTI &

SOLAR

WTI &

NUCLEAR

WTI &

WIND

WTI &

NEWENERGY

WTI &

NEV

Panel A: Mean equation

�12 0.0353** 0.0516*** 0.0514*** 0.0487*** 0.0540*** 0.0618***

(0.0167) (0.0152) (0.0163) (0.0129) (0.0132) (0.0177)

ψ12 0.0387 -0.0245 -0.0755 -0.0414 -0.0360 -0.0459

(0.0601) (0.0308) (0.0739) (0.0623) (0.0337) (0.0660)

�21 -0.0203 -0.0131 0.0125 -0.0085 0.0032 0.0110

(0.0181) (0.0187) (0.0214) (0.0123) (0.0203) (0.0212)

ψ21 -0.1256 -0.0600 -0.1826** -0.1077*** -0.1416 -0.0879

(0.0920) (0.0778) (0.0836) (0.0091) (0.0880) (0.1036)

Panel B: Variance equation

�12
2 0.0006*** 0.00004 0.0001 0.0045*** 0.0003 0.0002

(0.0223) (0.0208) (0.0242) (0.0163) (0.0232) (0.0209)

�21
2 0.0012* 0.0006 0.0005 0.0009* 0.0012** 0.0004

(0.0176) (0.0166) (0.0164) (0.0157) (0.0146) (0.0176)

�12
2 0.0001* 0.0001 0.00003 0.0002** 0.00009* 0.00003

(0.0050) (0.0044) (0.0049) (0.0068) (0.0051) (0.0058)

�21
2 0.0001** 0.00004 0.00003 0.0001* 0.00007** 0.0001

(0.0049) (0.0043) (0.0044) (0.0045) (0.0041) (0.0056)

Notes：(1) *, **and ***are statistically significant at 10%, 5% and 1% significance levels, respectively. Standard errors are in parentheses.

(2) According to the expanded form of equation (4) in Methodology, ARCH and GARCH spillover effects are explained by quadratic terms

of �12 , �21 , �12 and �21 . For the value of �12 , �21 , �12 and �21 , please refer to Appendix 1. (3) �12 represents the response of stock



return on the shock of oil return; �21 represents the response of oil return on the shock of stock return; ψ12 represents the response of

stock return on the shock of oil volatility; ψ21 represents the response of oil return on the shock of stock volatility; �12
2 represents the

response of oil volatility on the unexpected change of stock return; �21
2 represents the response of stock volatility on the unexpected

change of oil return; �12
2 represents the response of oil volatility on the shock of stock volatility; and �21

2 represents the response of

stock volatility on the unexpected change of oil volatility. (4) The constant terms and diagonal elements of certain matrices are omitted in

Table 3, and the complete table is shown in Appendix 1.



Table 4 Selected results of mean equation for two oil price cycles

WTI & HYDRO
WTI &

SOLAR

WTI &

NUCLEAR

WTI &

WIND

WTI &

NEWENERGY

WTI &

NEV

Panel A: Before the 2014 oil price decline (January 4, 2010-May 30, 2014)

�12 0.0894*** 0.1138*** 0.0927*** 0.0875*** 0.0998*** 0.0915***

(0.0311) (0.0289) (0.0297) (0.0273) (0.0280) (0.0308)

ψ12 0.2371 -0.1996* -0.1781** -0.1985* -0.1607 -0.1547

(0.2644) (0.1145) (0.0888) (0.1030) (0.1076) (0.0974)

�21 0.0143 -0.0114 0.0038 0.0046 -0.0097 0.0316

(0.0222) (0.0278) (0.0283) (0.0289) (0.0317) (0.0290)

ψ21 0.0229 -0.3268 -0.5464 -0.4372 -0.5708* -0.2873

(0.1880) (0.2896) (0.4716) (0.3271) (0.3417) (0.3447)

Panel B: After the 2014 oil price decline (January 1, 2015-December 29, 2017)

�12 0.0038 0.0167 0.0167 0.0173 0.0237 0.0282

(0.0228) (0.0204) (0.0256) (0.0203) (0.0241) (0.0260)

ψ12 0.3244* 0.0187 0.0713 0.1306 0.0262 0.0275

(0.1963) (0.1413) (0.1984) (0.1511) (0.1474) (0.1470)

�21 -0.0467 -0.0414 -0.0021 -0.0384 -0.0265 -0.0303

(0.0395) (0.0346) (0.0347) (0.0339) (0.0310) (0.0371)

ψ21 -0.5788*** -0.2528* -0.3805*** -0.3851** -0.3358** -0.4348***

(0.2139) (0.1300) (0.1350) (0.1606) (0.1327) (0.1346)

Notes：(1) *, **and ***are statistically significant at 10%, 5% and 1% significance levels, respectively. Standard errors are in parentheses.

(2) �12 represents the response of stock return on the shock of oil return; �12 represents the response of oil return on the shock of stock

return; ψ12 represents the response of stock return on the shock of oil volatility; and ψ21 represents the response of oil return on the

shock of stock volatility. (3) The constant terms and diagonal elements of certain matrices are omitted in Table 4, and the complete table

is shown in Appendix 2-3.



Table 5 Selected results of variance equation for two oil price cycles

WTI & HYDRO
WTI &

SOLAR

WTI &

NUCLEAR

WTI &

WIND

WTI &

NEWENERGY

WTI &

NEV

Panel A: Before the 2014 oil price decline (January 4, 2010-May 30, 2014)

�12
2 0.0018 0.0049 0.0091** 0.0006 0.0053* 0.0002

(0.0340) (0.0482) (0.0427) (0.0297) (0.0404) (0.0277)
�21
2 0.00003 0.0006 0.0046 0.0012 0.0000 0.0033

(0.0323) (0.0647) (0.0428) (0.0361) (0.0650) (0.0386)
�12
2 0.1554*** 0.0028 0.0002 0.0017 0.0007 0.0009

(0.0137) (0.0968) (0.0529) (0.0287) (0.0923) (0.0534)
�21
2 0.2442*** 0.0023 0.0003 0.00007 0.0009 0.0001

(0.0262) (0.0474) (0.0262) (0.0165) (0.0386) (0.0224)
Panel B: After the 2014 oil price decline (January 1, 2015-December 29, 2017)

�12
2 0.0018 0.0000 0.0000 0.0047 0.0067 0.003

(0.0465) (0.0600) (0.0634) (0.0446) (0.0521) (0.0638)
�21
2 0.0014 0.00002 0.00002 0.0009 0.0015 0.0004

(0.0253) (0.0308) (0.0333) (0.0247) (0.0257) (0.0348)
�12
2 0.00004 0.00009 0.00002 0.00004 0.0001 0.00001

(0.0105) (0.0085) (0.0090) (0.0096) (0.0100) (0.0116)
�21
2 0.0001 0.0000 0.00001 0.00005 0.00005 0.0002

(0.0079) (0.0114) (0.0134) (0.0071) (0.0085) (0.0134)

Notes：(1) *, **and ***are statistically significant at 10%, 5% and 1% significance levels, respectively. Standard errors are in

parentheses. (2) According to the expanded form of equation (4) in Methodology, ARCH and GARCH spillover effects are

explained by quadratic terms of �12, �21, �12 and �21. For the value of �12, �21, �12 and �21, please refer to Appendix 2-3. (3)

�12
2 represents the response of oil volatility on the unexpected change of stock return; �21

2 represents the response of stock

volatility on the unexpected change of oil return; �12
2 represents the response of oil volatility on the shock of stock volatility;

and �21
2 represents the response of stock volatility on the unexpected change of oil volatility. (4) The constant terms and

diagonal elements of certain matrices are omitted in Table 5, and the completed table is shown in Appendix 2-3.
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